La minéralisation en antimoine de Goesdorf (2)

Simon Philippo

Musée national d'histoire naturelle, 25 rue Münster L-2160 Luxembourg simon.philippo@mnhn.lu

Frédéric Hatert

Université de Liège, Laboratoire de Minéralogie Allée du six août, 6 - B18 B-4000 Liège fhatert@ulg.ac.be

Zusammenfassung

Die erste Schätzung des Vorkommens von Goesdorf ist 2007 in Ferrantia veröffentlicht worden. Diese basierte nur auf den Halden geernten Proben. Seitdem haben Arbeiten des Fremdenverkehrsamtes den Wissenschaftlern des MnhnL ermöglicht Zugang zum Erz zu haben : drei Adern einigen Zentimeter dick sind studiert worden. Diese Studie hat uns ermöglicht die mineralogische und metallogenische (?)Kenntnisse des Vorkommens zu erweitern. Wir haben neuen Sulfide von Pb-Sb (Fülöppit, Plagionit, Robinsonit, Geokronit) und die trägeriche Phase des Nickels identifiziert (Ullmannit), sowie zahlreiche sekundäre Phasen des Antimons (Brandholzit, Coquandit, Klebelsbergit und Peretait).

Abstract

The first evaluation of the Goesdorf deposit was published in 2007 into the Ferrantia number 49. This study was based on samples collected on mine dumps. Recently, we investigated three quartz veins located directly in the mine; these analyses allow to better understand the mineralogy and genesis of this ore deposit. Mineralogical analyses indicate the presence of Pb-Sb-sulfosalts (fülöppite, plagionite, robinsonite, geocronite), ulmannite, as well as secondary Sb minerals (brandholzite, coquandite, klebelsbergite et peretaite).

Résumé

Une première évaluation du gisement de Goesdorf a été publiée en 2007 dans le Ferrantia 49. Celle-ci se basait uniquement sur des échantillons récoltés sur les anciennes haldes. Depuis lors, des travaux du syndicat d'initiative ont permis aux scientifiques du MnhnL d'avoir accès au minerai en place : trois filons de quelques centimètres d'épaisseur ont été étudiés. Cette étude nous a permis de pousser plus en avant la connaissance minéralogique et métallogénique du gisement. Nous avons ainsi mis en évidence de nouveaux sulfures de Pb-Sb (fülöppite, plagionite, robinsonite, géocronite), identifié la phase porteuse du nickel (ullmannite), ainsi que de nombreux phases secondaires d'antimoine (brandholzite, coquandite, klebelsbergite et peretaite).

Introduction

La minéralisation à antimoine de Goesdorf est apparemment plus connue que nous le pensions précédemment. Dans nos recherches bibliographiques dans le cadre de l'étude de sections polies, nous avons en effet trouvé des photos du minerai de Goesdorf, publiées dans les ouvrages du célèbre métallogéniste Paul Ramdohr (1955, 1980). Ces photos seront présentées dans le chapitre consacré à la stibine.

Depuis la publication relative à la minéralisation à antimoine de Goesdorf, dans le Ferrantia 49 de 2007, il nous a été donné de récolter de nouveaux échantillons, notamment par la réouverture du puits II par une équipe du syndicat d'initiative de Goesdorf en octobre 2007. La figure 1 localise ce puits numéroté II. Elle est reprise de la figure 3 du Ferrantia 49 en page 118. Nous reviendrons en détail sur les travaux de ce puits dans le chapitre suivant.

En 2009, deux publications en collaboration avec Monserrat Filella nous ont permis de mettre en contexte la minéralogie de Goesdorf. Les données recueillies sont relatives à la dispersion de l'antimoine issu de la mine dans l'environnement proche. Ces données vont plus loin que notre approche classique des phases secondaires ou tertiaires d'un gisement. Il s'agit de voir ici comment se comportent les métaux mis en solution et transportés hors de la mine. Ces deux publications ont un très bel impact de lecture avec 44 citations pour l'une et 18 pour l'autre.

En 2010, Bakker et Kolitsch publient un article sur la minéralogie de la mine et notamment sur la présence de brandholzite à Goesdorf qui est la troisième occurrence mondiale. Cette brandholzite, nous l'avions référencée dans la publication de 2007 comme « indéterminé 2 » et décrite dans la publication (Filella *et al.*, 2009b). Cette publication dans la revue de minéralogie allemande 'Lapis' montre l'intérêt international pour la minéralogie de ce site. De cet article nous noterons aussi la mise en évidence de la métastibine par les deux auteurs. Nous y reviendrons dans la description minéralogique.

Depuis lors, une analyse systématique de tous les échantillons jugés comme intéressants lors de l'étude au binoculaire a été réalisée. Chaque échan-

Figure 1: Localisation du puits II sur le site minier de Goesdorf (figure reprise de la page 118 du Ferrantia 49).

tillon a été préparé spécialement pour acquérir les meilleures photos au microscope électronique à balayage, et orienté de manière adéquate pour pouvoir procéder à une analyse chimique qualitative (méthode EDS, « Energy-dispersive X-ray spectrometry »). En cas de doute après cette première analyse, un fragment de ces échantillons a été analysé par diffraction des rayons X sur le diffractomètre à 4 cercles du Laboratoire de Minéralogie de l'université de Liège (soit en monocristaux, soit en poudre). Les échantillons de minerais réagissant à certains tests de microchimie pour mettre en évidence la présence de plomb, ont été préparés en sections polies et étudiés au microscope en lumière réfléchie. Une sélection de ces échantillons a été soumise à l'Université de Bochum pour être étudiés au moyen de la microsonde électronique.

Tous ces moyens d'investigation nous ont permis d'obtenir l'inventaire minéralogique que nous allons vous présenter dans ce travail.

Il restait certaines lacunes dans la connaissance de l'extension structurale de la minéralisation à antimoine de Goesdorf. Dès lors, nous avons commandé une nouvelle campagne de prospection géophysique en 2013. Nous vous présenterons dans ce travail les résultats de la prospection électromagnétique réalisée à l'aplomb de la zone minéralisée.

A la vue des lacunes concernant les données P-T-X (pression – température – salinité) qui ont permis la formation des minéralisations luxembourgeoises, nous avons, en collaboration avec l'université de Nancy, réalisé une étude des inclusions fluides des minéraux de la plupart de ces minéralisations. Cette étude globale des paléofluides des minéralisations luxembourgeoises, et notamment Goesdorf, sera bientôt publiée.

Nous ne reviendrons pas sur l'étude historique de 2007. Même si celle-ci nécessite des éclaircissements, personne n'a eu l'occasion de réaliser de nouvelles recherches. Néanmoins nous profitons de l'occasion pour demander au lecteur si par hasard, il aurait connaissance de l'existence d'un document original que nous recherchons. Ce document est relaté par Lucius (1948) mais nous aimerions consulter le document d'origine. Il s'agit de la note rédigée en 1854 par Weyer (livre d'exploitation de la mine de 1847 à 1854 par la société Hartmann & Co.).

Nouvel échantillonnage, nouvelles analyses

La galerie d'exhaure

Lors de nos premières visites du site en 1997, on pouvait distinguer, grâce à la présence d'un vallon étroit, l'emplacement de l'ancienne galerie d'exhaure de la mine de Goesdorf.

Dès 2005, des travaux d'aménagement réalisés sous la supervision du syndicat d'initiative nous ont permis l'accès à celle-ci et donc à un échantillonnage systématique en lien avec la cartographie de la galerie. Ce travail de cartographie a été présenté à la figure 13 du Ferrantia 49 en page 128 (Philippo et Hanson, 2007).

En 2010, l'entrée de la galerie a été entièrement sécurisée. La compilation des photos de la galerie prises en 1997, 2005 et 2010 est présentée en figure 2.

Le puits ll

Suite aux travaux de réouverture du puits II par le syndicat d'initiative de Goesdorf, nous avons eu l'occasion de réaliser une première cartographie et une première série de prélèvements le 10 octobre 2007. Après approfondissement du puits, nous sommes repassés compléter notre plan et nos prélèvements le 19 aout 2009.

Nous avons pu mettre en évidence, cartographier et prélever 5 filons. Nous les avons numérotés de f1 à f5. Ceux-ci sont repris sur la figure 3 qui compile les données recueillies en 2007 et 2009. Nous avons également pu réaliser des croquis (vue en coupe) des filons f2 et f4.

Le puits est rectangulaire (3,0 m x 1,9 m). La zone d'observation se situe entre 3 et 5 m de profondeur. L'un descôtés est bordé par une faille, de direction 70°N, marquée par une zone fortement mylonitisée et limitée par une salbande composée d'argile grise et variant en épaisseur de 10 à 50 cm. L'autre côté est quant à lui limité par une salbande d'argile grise de 10 cm d'épaisseur et un filonnet de quartz stérile ultra fracturé. Le filon f1 se subdivise en deux. Il est parallèle à la zone de faille. Le filon f1a est en contact avec l'éponte de schiste ; il est composé de stibine avec de la pyrite visible aux

Figure 2 : Photos de l'entrée de la galerie d'exhaure prises en 1997, en 2005 et en 2010.

Figure 3: Schéma du puits II avec représentation des différents filons étudiés, failles et salbandes ; ainsi que croquis des filons f2 et f4.

épontes. Le filon f1b est un filonnet de quartz de 3cm d'épaisseur contenant de la pyrite cristallisée. Le filon f2 de direction N240°E, mesure entre 2 et 4 cm avec une éponte de schiste de chaque côté. Il est composé majoritairement de quartz avec des pointements de stibine. Vers le bas ce filon se sépare en deux. Le croquis de ce filon f2 est repris sur la figure 3. Le filon f3 est un filon de 3 à 5 cm d'épaisseur composé massivement de stibine entre deux épontes de schiste. Sa direction est N235°E. Le filon f4 est un filon de quartz en lentille variant en épaisseur de 1 à 5 cm. Il est assez peu minéralisé en antimoine. L'une des épontes est un schiste fortement pyriteux (présence de nodules de pyrite allant jusqu'à 2cm de diamètre). L'autre éponte est composée d'argile grise. Le croquis de ce filon f4 est repris sur la figure 3. Le filon f5 est composé d'antimoine massif avec du quartz entre deux épontes de schiste. Son épaisseur est de 2 à 3 cm. Nos observations nous amènent à nous demander si les filons f1 et f5 n'auraient pas tendance à fusionner. A proximité du filon f5, nous avons pu également observer deux salbandes d'argile brune parallèles et faisant chacune quelques centimètres d'épaisseur.

L'étude de la roche encaissante et des joints argileux, autrement appelés salbandes, a été publié dans la revue Applied Geochemistry (Filella et al, 2009a). La description qui y est faite est la suivante :

The main rock in Goesdorf is slate with graded bedding. It is a siltstone with angular, moderately sorted grains composed of quartz, clay and mica. The quartz-sandstone intercalations are mature sandstones, classed as arenite, mainly composed of well sorted and angular quartz grains, with some mica, zircon and feldspar.

The argillaceous joints are between 5 and 10 cm thick. They are mainly formed of kaolinite, clinochlore and illite. The main trace elements present are (all values in wt %): Ti (1.010), Ba (0.040), Zr (0.030), Cr (0.015), Rb (0.015), Sr (0.015), Ni (0.007) and rare earth elements, i.e. La (0.015) and Ce (0.020). The presence of these trace elements can be explained by some minor minerals found in the argillaceous joints such as zircon (ZrSiO₄ containing some rare earth elements), rutile (TiO₂ with some Cr), chromite (FeCr₂O₄) and pyrite (FeS₂ with some Ni).

Méthodologie

Microscopie électronique à balayage et analyses EDS

Plusieurs appareils ont été utilisés successivement pour l'acquisition des images et des analyses en microscopie électronique :

Le Leica du CRP-LAM (2009 à 2012) au Luxembourg. Les images et les analyses eds acquises entre 2009 et 2012 l'ont été avec le microscope électronique à balayage (MEB) Leica Stereoscan 430i du CRP Lippmann, Luxembourg. Celui-ci était équippé avec des détecteurs SE (Secondary Electrons), BSE (Back Scattered Electrons) et EDS (Energy-dispersive X-ray spectroscopy).

Le Hitashi du CRP-LAM (2013), maintenant LIST (MRT) au Luxembourg. Le MEB Hitachi SU-70 a été utilisé pour acquérir des images en microscopie électronique. Pour les analyses EDS, l'appareillage est couplé au système Oxford Inca X-Max.

Le Jeol 6000 du MnhnL depuis 2015. Les images et les analyses eds acquises en 2015 et 2016 l'ont été avec le microscope électronique à balayage (MEB) Jeol JCM-6000 du MnhnL. Celui-ci est équippé avec des détecteurs SE (Secondary Electrons), BSE (Back Scattered Electrons) et EDS (Energydispersive X-ray spectroscopy) de type dry SD detector.

Microscopie optique en lumière réfléchie et la microsonde électronique

Les lames minces polies ont été éxaminées en lumière transmise et réfléchie au moyen du microscope Leica DME POL du MnhnL.

Les minéraux des lames minces polies selectionnées ont été observées et analysées au moyen de la microsonde Cameca SX50 de la Ruhr Universität de Bochum en Allemagne (annexe). Les mesures ont été faite en utilisant un voltage d'accélération de 20.0 kV et un courant de sonde de 20.0 nA. Nous avons utilisé les cristaux et standards suivants pour quantifier les différents éléments: As sur la raie $L\alpha$ avec le cristal TAP et un standard d'arsenopyrite; Ni sur la raie $K\alpha$ avec le cristal LIF et un standard de NiO; Zn sur la raie $K\alpha$ avec le LIF et un standard de ZnS; Fe sur la raie $K\alpha$ avec le LIF et un standard d'arsenopyrite; Co sur la raie $K\alpha$ avec le LIF et un standard de Co métal; Cu sur la raie $K\alpha$ avec le LIF et un standard de covellite; Sb sur la raie $L\alpha$ avec le cristal PET et un standard de Sb₂S₃; Pb sur la raie $M\alpha$ avec le PET et un standard de PbS; et S sur la raie $K\alpha$ avec le PET et un standard de PbS. Tous les bruits de fond ont été corrigés avec les données suivantes: +800/0 excepté pour Sb (+800/–800) et Pb (+1750/–800).

Diffraction des rayons X

Les identifications par diffraction des rayons X ont été réalisées à l'aide du diffractomètre à 4 cercles Rigaku Xcalibur du Laboratoire de Minéralogie de l'Université de Liège, équipé d'un détecteur EOS et utilisant la radiation Mo $K\alpha$ ($\lambda = 0.71073$ Å). De faibles quantités de matière ont été broyées, et ensuite collées sur un capillaire en verre à l'aide de vaseline. Le capillaire a ensuite été fixé sur une tête goniométrique, et montée sur le diffractomètre. La mesure a été effectuée en mode Debye-Scherrer, grâce à un balayage de 40 minutes.

Descriptions minéralogiques

L'utilisation de ces différentes méthodes analytiques nous a permis d'identifier jusqu'ici 51 espèces minérales pour le gisement, contre 34 en 2007. Nous avons de plus réalisé de nombreuses photos au microscope électronique à balayage et, grâce à la collaboration de Gerhard Niceus, pu obtenir de superbes photos de nos échantillons. Les sulfures ont été essentiellement étudiés en sections polies et analysés à la microsonde électronique (annexe). L'approche pour les phases secondaires a été essentiellement une analyse EDS suivie d'une confirmation par diffraction des rayons X. Entre la publication de 2007 et celle-ci, une partie des données recueillies a été publiée dans la revue Science of the Total Environment. Le titre de l'article est le suivant : Natural attenuation processes applying to antimony: A study in the abandoned antimony mine in Goesdorf, Luxembourg. Il est repris sous la référence bibliographique Filella et al. (2009b). Il s'agit d'un travail sur les processus d'atténuation naturelle de la teneur en antimoine dans la nature; l'ancienne mine de Goesdorf ayant servi de site d'observation. Comme l'utilisation des données minéralogiques dans cet article est différente, nous avons repris ci-dessous un extrait de celui-ci.

Minerals present in the supergene zone

Antimony primary minerals

An initial study by Philippo and Hanson (2007) on the Sb primary minerals present in the Goesdorf mine has been extended here. The composition of the ore body in the Sb mineralization varies from the wall to the centre. The wall is composed of quartz, carbonates (calcite, dolomite and siderite, with siderite as the major element), clinochlore, minor amounts of apatite and an abundance of large fragments of pyrite rich in As (0.2-4%), Cu, Ni and Co (up to 8%). The centre of the mineralization is composed of Sb ore where stibine (Sb₂S₂) is the major component (approximately 80%). Various Pb, Fe and Cu sulphosalts (5%), pyrite and sphalerite (ZnS) (for the last 15%) are also present. Close to the pyrite, some amounts of chalcopyrite and ullmannite (NiSbS) have also been observed. The Fe and Cu sulphosalts found were berthierite (FeSb₂S₄) and chalcostibite (CuSbS₂). Pb-Sb sulphosalts detected were, in increasing order according to Pb content, jamesonite (Pb4FeSb6S14), fülöppite $(Pb_3Sb_8S_{15})$, zinkenite $(Pb_9Sb_{22}S_{42})$, plagionite $(Pb_{5}Sb_{8}S_{17}),$ robinsonite $(Pb_4Sb_6S_{12})$ and geocronite (Pb14(Sb,As), S₂₃), with a very low As content (ratio Sb:As, 4:1).

Antimony secondary minerals

When exposed to flowing water, the Sb primary minerals are oxidized, forming oxides, hydroxides and sulphates. The Sb secondary minerals associated with the Goesdorf Sb ore are listed in Table 2. This table also shows representative pictures of specimens of the different minerals collected in this mine. Observation of a large number of samples has made it possible to estimate the relative proportion of the main secondary minerals present in the supergene environment at roughly the following: valentinite, 70%; senarmontite, 15%; the various sulphates (coquandite, klebelsbergite, peretaite), 12%, and the rest, 3%. Other non-containing Sb secondary minerals found are hematite and sulphates such as gypsum (CaSO₄.nH₂O) and anglesite (PbSO₄).

It is interesting to note that As is present in the senarmontite at concentrations of 3-4% and that the chalcostibite is altered into malachite. Until now, no secondary Ni- and Co-containing minerals have been found. The presence of small elemental sulphur crystals associated with valentinite and senarmontite has been observed repeatedly. The presence of sulphur is usually considered as characteristic of the rapid oxidation of sulphide under acidic conditions (Williams, 1990). The observed sulphur crystals in Goesdorf samples also suggest a fast kinetic formation process with preferential growth of the edges forming a negative depression into the faces. On the other hand, when Sb sulphides, oxides and sulphates are observed together in the cracks and voids, the oxides predominate over the sulphates and no elemental sulphur is present. Fig. 2 shows a representative example of such a case. The association of coquandite, klebelsbergite and peretaite with valentinite, senarmontite, stibiconite, gypsum, and native sulphur has been reported in a few other mines (Cipriani et al., 1980a,b; Sarp et al., 1983; Orlandi, 1984; Sabelli et al., 1992) but Sb-containing sulphate minerals have been found only rarely up to now and the conditions of formation are unknown. In order to stabilise 'simple' sulphates, such as coquandite, klebelsbergite, or peretaite, the appropriate redox regime needs to hold for Sb to remain in the form of Sb(III) rather than being transformed into Sb(V), which could lead to the pyrochlore series, and protons must be present to allow the sulphate to react with the oxides. However, at present the stability constant values needed to properly evaluate the conditions for reactions are lacking.

Although minor minerals are not expected to buffer Sb concentrations in water, their presence can be interesting from a mineralogical point of view. Among them, it is worthwhile mentioning the presence in Goesdorf of brandholzite, which is a relatively rare mineral (Friedrich et al., 2000; Sejkora et al., 2007).

Vous trouverez ci-dessous la description complète de toutes les espèces minérales décrites jusqu'à aujourd'hui à Goesdorf. Elles sont présentées par classement systématique. Cette présentation nous a paru la plus logique car, hormis le quartz, la majorité des silicates et des carbonates, la plupart des minéraux primaires sont des sulfures.

Sulfures

Pyrite, FeS₂

Déjà décrite en 2007 comme minéral présent tant dans le minerai que dans l'encaissant, la pyrite se présente sous différentes formes : framboïdale, réniforme, en cubes, en dodécaèdres pentagonaux, avec une taille de cristaux variant entre 1 et 4 mm. Les deux photos présentées à la figure 4 montrent l'aspect caractéristique de ce minéral.

La pyrite a également été observée au MEB en cristaux cubiques tronqués associés à la zinkenite (figure 5), ou en cristaux aux formes plus complexes (figure 6). Nous avons observé des filons de pyrite

Figure 4: Pyrite (4a) photo G. Niceus, largeur de l'image 2,1 mm - (4b) photo G. Niceus, largeur de l'image 3,1 mm.

Figure 5: Pyrite et zinkenite : photo 7680 de l'échantillon 2009-sem04 - SE, 200x, 20kv, 200pa.

fracturés et ayant permis la mise en place d'un filon de quartz et stibine. Une première génération de pyrite s'est formée dans la roche encaissante. La seconde génération devait former les filons d'origine, qui sont actuellement fracturés.

Des analyses à la microsonde électronique des pyrites nous apportent les informations suivantes : on note au moins deux générations de pyrite. L'une en cristaux bien formés et souvent riche en As (jusqu'à 4% pds) et une autre (en remplissage de vides) très pauvre en As (0,2 % pds). Nous avons également mesuré une pyrite avec une teneur exceptionnelle en Ni de 7,8 % pds.

Concernant les variations de teneurs en As et en autres éléments, nous avons réalisé un échantillonnage de différentes provenances de pyrite : trois pyrites associées au minerai que nous appellerons pyrite du filon ; trois pyrites associées aux quartz et chlorite des épontes ; deux pyrites dans l'encaissant proche du filon ; et trois pyrites dans la roche environnante (grès et schiste). Tous ces échantillons ont été triés pour être les plus purs possible et envoyés au service central d'analyse du CNRS à Vernaison (France) pour analyse ICP-MS des éléments en trace suivants : As, Ni, Co, Cu, Ag, Au, Zn, Tl, Se, V. Les résultats sont extrêmement intéressants. Les pyrites de Goesdorf montrent des teneurs significatives en As, Ni, Co, Cu et Zn. Les autres éléments montrant des teneurs proches de la limite de détection. L'ensemble de ces données est résumé sur la figure 7. La teneur en As est basse dans le filon ss (< 450 ppm) et augmente de manière brusque dans l'éponte et l'encaissant (max 18800 ppm) pour rechuter brutalement dans la roche (<450 ppm)

Figure 6: Pyrite et stibine : photo 9808 de l>échantillon 2009-sem62 - *BSE, 200x, 20kv, 450pa*.

(figure 7a). La teneur en Cu est assez faible dans le filon (<20 ppm), augmente fort aux épontes et dans l'encaissant (max à 145 ppm) pour rechuter dans les roches (<10 ppm). Cette teneur en Cu semble avoir la même distribution que As (figure 7b). Une analyse des coefficients de corrélation montre une corrélation positive proche de 1 (R²=0,9832) entre As et Cu. La teneur en Ni présente deux pics, l'un associé au filon et l'autre aux épontes (figure 7b). La teneur en Co est quasi constante (< 40 ppm) quel que soit l'endroit d'échantillonnage (figure 7b). La teneur en Zn présente certains pics dans le filon ou dans la roche sans lien apparent avec l'échantillonnage (figure 7c)

Marcasite, FeS₂

La marcasite a été identifiée en 2007 par diffraction des rayons X.

Chalcopyrite, CuFeS₂

En 2007, nous signalions que la chalcopyrite était essentiellement observée dans les filons de quartz riches en carbonates ; comme à l'époque, nous n'avions que des échantillons prélevés sur les haldes, elle était généralement partiellement altérée en malachite. Lors de nos études à la microsonde électronique nous avons pu confirmer directement sa présence par analyse. La plupart du temps, elle forme de microcristaux associés à la berthierite et aux sulfosels de Pb-Sb (figure 8). On trouve de la chalcopyrite dans les filons f2, f4 et f5.

Figure 7: Projection graphique des teneurs en éléments en traces As, Ni, Co, Cu, Zn en fonction de leur position dans la minéralisation. (7a) teneur en As (7b) teneurs en Cu, Co, Ni (7c) teneur en Zn (7d) schématisation de l'emplacement de l'échantillon dans la minéralisation.

Ullmannite, NiFeS

L'ullmannite a été observée pour la première fois sur l'échantillon LM2007-16 (G194) lors des analyses à la microsonde électronique. Elle se présente sous forme cubique et ressemble fort à une pyrite (figures 9 et 10). Les analyses montrent qu'elle peut contenir entre 2 et 4 % d'As, ce qui est commun dans les analyses d'ullmannite. Elle a été observée en association avec la berthierite ou en inclusions de 5 µm dans la plagionite. On trouve de l'ullmannite uniquement dans le filon f2.

Figure 8: Chalcopyrite (point analyse 41), berthierite (pt 42) et jamesonite (pts 43 et 44) dans plage de stibine : photo 345-R2 de l'échantillon LMG345 - *BSE*, 20kv, 500pa, échelle de 50 μ m s.

Galène, PbS

Nous n'avons rencontré la galène qu'une seule fois sur un point d'analyse à la microsonde électronique, en association avec la stibine, le quartz et la sidérite (échantillon LM2007-14).

Sphalérite, ZnS

La sphalérite se présente sous forme de tétraèdres simples, translucides et de couleur ambrée (figure 11). Les cristaux font en moyen 0,5mm de diamètre et présentent parfois de légères troncatures d'arête.

Lors de nos observations au microscope électronique à balayage, nous avons trouvé des fins cristaux de stibine parfaitement formés et terminés par des 'pompons' de sphalérite (figure 12 a et b). Les deux espèces ont été discriminées par EDS.

Nous nous sommes rendu compte que la sphalérite est beaucoup plus courante que lors de notre inventaire de 2007. Elle se trouve en fines lamelles en inter-croissance avec les sulfures de Sb. Les analyses montrent qu'elle a une très faible teneur en fer (< 1,2 % pds) mais qu'elle contient aussi du Sb en substitution (environ à 1% pds). Ce type de substitution est noté dans la littérature. On trouve de la sphalérite dans les filons f2, f3 et f5. Dans les filons f2 et f3, c'est l'un des composants majeurs de certaines zones.

Figure 9: Ullmannite dans une masse de stibine : photo en lumière réfléchie sur l'échantillon LM2007-16 - *taille du cristal : 100* µm.

Figure 10: Ullmannite, cristal zoné contenant des inclusions dans plage de stibine : photo LM07-16 de l'échantillon LM2007-16 - *BSE, 15kv, 500pa, échelle de 50* µm.

Figure 11: Sphalérite (11a) photo G. Niceus, largeur de l'image 0,7 mm - (11b) photo G. Niceus, largeur de l'image 0,85 mm.

Stibine, Sb₂S₃

La stibine est de loin le composant majeur de la minéralisation de Goesdorf. Elle se présente la plupart du temps en minerai compact. Néanmoins, les géodes laissées dans le minerai ou dans la matrice de quartz réservent de très belles surprises. On y trouve des cristaux biterminés en croissances parallèles, des cristaux courbés ou complètement déformés, des cristallisations en gerbe, ... (planche 1 et 2). Nous avons pu mettre en évidence au moins deux générations de stibine ; la seconde génération se présentant sous la forme de boules fibroradiées (planche 2f). La taille des cristaux varie entre 0,2 et 4mm avec un seul échantillon connu montrant un cristal de 28mm.

La stibine de Goesdorf semble être connue des plus grands métallogénistes. En effet, des photos de la

stibine de Goesdorf illustrent l'ouvrage de référence rédigé par Paul Ramdohr en 1955 en allemand et en 1980 en anglais. On peut y voir un premier cliché présentant selon sa description une stibine, fortement stressée et déformée montrant des lamelles de corrugation et une extinction ondulante ; et un second cliché présentant une stibine, orienté de manière distincte, dont la brillance et l'orientation des grains varient considérablement dans la section. Ces illustrations sont visibles sur la figure 13.

Nos études à la microsonde électronique ont montré que la stibine de Goesdorf contient en moyenne 2,2 % pds d'As. Un tel pourcentage de substitution est connu dans les stibines roumaines (Buzatu *et al.*, 2015). On trouve de la stibine dans les filons f1a, f2, f3, f3b, f4 et f5 du puits II.

Figure 12: (12a) Stibine avec terminaison de sphalérite : photo 9817 de l'échantillon 2009-sem63 - BSE, 1200x, 20kv, 450pa - (12b) grossissement à 4000x (photo 9818).

Figure 13: (13a) Stibine, Old antimony mine near Gösdorf, Luxemburg - fig. 464a (p 707) de Ramdohr, 1980 - grossissement 110x - (13b) stibine, Gösdorf, Luxemburg - fig. 464b (p 708) de Ramdohr, 1980 - grossissement 80x.

Metastibine, Sb₂S₃

Cette espèce de couleur rouge a été identifiée par Bakker et Kolitsch dans leur publication de 2010. Ils la décrivent comme une phase rouge foncé en croute épaisse qui périmorphise des formes creuses dans les cavités de stibine massive. Elle a été identifiée par ces deux auteurs par EDS et XRD. D'après ce que nous avons pu lire, cette espèce serait apparemment une 'stibine' supergène ou une phase d'altération... La littérature reste très vague sur les conditions de formation.

Berthiérite, $FeSb_2S_4$

La berthiérite est observée dans la stibine massive associée à la chalcopyrite, la sphalérite et des micros

quartz. Elle se présente en assemblage de fins cristaux allongés souvent de couleur jaune orangé métallique (figure 14). Elle est très rare et il est extrêmement difficile de la distinguer des autres sulfosels sous le binoculaire. Une identification par EDS ou à la microsonde électronique est absolument nécessaire. En section polie, elle est reconnaissable par sa couleur rosée. Elle est souvent associée à la chalcopyrite, la jamesonite et la stibine (figure 8 et 15).

Nous avons identifié la berthiérite dans les filons f1a, f2 et f5.

Jamesonite, $Pb_4FeSb_6S_{14}$

La jamesonite se présente en assemblages de cristaux aciculaires avec un éclat métallique

Planche 1: (1a) Cristaux de stibine courbes partiellement recouverts de stibiconite, photo G. Niceus, largeur de l'image 4,5 mm - (1b) cristal de stibine parfaitement terminé dans une cavité de quartz, photo G. Niceus, largeur de l'image 3,3 mm - (1c) cristaux de stibine biterminés en croissance parallèles, photo G. Niceus, largeur de l'image 3,0 mm - (1d) cristal de stibine très fortement replié sur lui-même dans une cavité de quartz, photo G. Niceus, largeur de l'image 2,00 mm - (1e) cristaux de stibine en croissance parallèle et terminés, recouverts de gypse, photo G. Niceus, largeur de l'image 3,24 mm - (1f) cristaux de stibine associés avec de la pyrite dans des cavités de quartz, photo G. Niceus, largeur de l'image 3,35 mm.

Planche 2: (2a) Stibine fortement replié sur elle-même : photo 9812 de l'échantillon 2009-sem63 (même échantillon que photo de la planche 1d) - *BSE*, *350x*, *20kv*, *450pa* - (2b) cristaux de stibine biterminés en croissance parallèle : photo 8539 de l'échantillon 2009-sem20 (G68) - *BSE*, *700x*, *20kv*, *150pa* - (2c) cristal de stibine fortement courbé dans une matrice de quartz : photo 9182 de l'échantillon 2009-sem42 - *BSE*, *200x*, *20kv*, *150pa* - (2d) cristal de stibine biterminé, trapus et court : photo 9742 de l'échantillon 2009-sem51 - *BSE*, *1500x*, *20kv*, *150pa* -(2e) gerbes de cristaux de stibine parfaitement terminés : photo 9823 de l'échantillon 2009-sem64 - *BSE*, *1000x*, *20kv*, *450pa* - (2f) deux générations de stibine : première génération en cristaux droits bien formés et seconde génération en boule fibroradiée : photo 9864 de l'échantillon 2009-sem84 - *BSE*, *500x*, *20kv*, *450pa*.

Figure 14: Ensemble de cristaux enchevêtrés de berthiérite de couleur jaune orangés dans une matrice de stibine, photo G. Niceus, largeur de l'image 1,41 mm.

marqué dans les bleus jaunâtres (figure 16). Elle est toujours associée à la stibine et peut être facilement confondue avec la berthiérite et les sulfosels de Pb-Sb. Une analyse EDS est au minimum nécessaire pour l'identifier formellement. Sous le microscope électronique à balayage, la jamesonite se présente également en cristaux aciculaire (figure 17). Des analyses chimiques à la microsonde électronique ont été réalisées sur des très petites inclusions dans la stibine. Les points d'analyses sont numérotés 43 et 44 sur la figure 8. La jamesonite a un rapport Sb/Pb variant entre 0,9 et 1,0 ; cette phase a été identifiée uniquement dans le filon f2.

Les sulfosels de Pb-Sb

Il existe une grande famille de sulfosels d'antimoine contenant divers éléments métalliques comme le plomb, l'argent, le zinc, le cuivre, le fer, etc. C'est le plomb qui est le plus fréquemment représenté et pour lequel la diversité d'espèces est la plus grande. Ces différentes espèces sont impossibles à distinguer à la loupe et au microscope électronique à balayage : puisque l'analyse EDS n'est pas quantificative, les rapports Pb/Sb ne sont pas mesurables. Dans la publication de 2007, nous parlions uniquement de zinkenite car nous n'avions pas eu l'occasion d'étudier le minerai à la microsonde électronique. Nous allons donc vous présenter ici les photos prises optiquement et au microscope électronique à balayage sous l'intitulé sulfosels de Pb-Sb (planche 3 et 4). Nous détaillerons les différentes espèces uniquement sur base

Figure 15: Vue d'une portion de la section polie LMG345 en lumière naturelle : la berthiérite (3) est la phase en rose, la stibine (1) est bleutée, la jamesonite (2) est plus blanche et la chalcopyrite (4) est jaune - grossissement 40 x.

de nos photos et analyses chimiques (annexe). Il faut tout de même préciser que les deux sulfosels de Pb-Sb les plus courants sont la fülöppite et la zinkenite ; les autres étant plus accessoires.

Fülöppite, Pb₃Sb₈S₁₅

La fülöppite cristallise en longues aiguilles relativement fines (600 μ m de long pour 10 μ m d'épaisseur). Elle a été identifiée dans la lame LMG 351. Cette lame composée essentiellement de stibine est traversée par une fissure remplie par de la sphalérite et de la fülöppite (figure 18). Elle a également été observée dans la lame LMG345 en

Figure 16: Ensemble de cristaux enchevêtrés d'aiguilles de jamesonite bleu jaunâtres sur quartz, photo G. Niceus, largeur de l'image 3,2 mm.

Planche 3: (3a) Cristal formé de nombreuses aiguilles parallèles de sulfosel de Pb-Sb dans une matrice de quartz, photo G. Niceus, largeur de l'image 2,4 mm - (3b) ensemble d'aiguilles bleues enchevêtrées de sulfosel de Pb-Sb dans la stibine, photo G. Niceus, largeur de l'image 2,0 mm - (3c) ensemble d'aiguilles jaunâtres enchevêtrées de sulfosel de Pb-Sb dans la stibine, photo G. Niceus, largeur de l'image 2,0 mm - (3d) ensemble d'aiguilles bleues, vertes, rouges et jaunes enchevêtrées de sulfosel de Pb-Sb dans la stibine, photo G. Niceus, largeur de l'image 2,0 mm - (3d) ensemble d'aiguilles bleues, vertes, rouges et jaunes enchevêtrées de sulfosel de Pb-Sb dans la stibine, photo G. Niceus, largeur de l'image 4,0 mm.

association avec la stibine et l'ullmannite (figure 19). Nous pouvons déduire de la figure 18 qu'à Goesdorf, les cristaux de fülöppite sont aciculaires à section hexagonale. La fülöppite a un rapport Sb/Pb variant entre 1,4 et 1,8. Cette phase a été identifiée uniquement dans les filons f2 et f3.

Zinkenite, Pb₉Sb₂₂S₄₂

La zinkenite se présente en assemblage de fines aiguilles. Dans la lame LMG361, cette zinkenite en aiguilles est en association avec d'autres sulfosels de Pb-Sb (fülöppite, plagionite, et robinsonite) ainsi qu'avec l'ullmannite, la chalcostibite et la sphalérite dans une matrice de stibine (figure 20). La zinkénite a un rapport Sb/Pb variant entre 1,3 et 1,5. La zinkenite remplit souvent des fractures dans des masses de stibine. La lame LM2007-19 présente un filon de stibine avec épontes de schiste (présence de quartz et pyrite aux épontes). Dans cette lame, nous avons pu observer une fracture remplie par la zinkenite avec d'autres sulfosels de Pb-Sb (fülöppite, plagionite, robinsonite) (figure 21). Cette phase n'a pas été identifiée dans les filons du puits II.

Plagionite, Pb₅Sb₈S₁₇

Ce sulfosel de Pb-Sb est relativement rare à Goesdorf. Nous ne l'avons rencontré que dans deux lames minces où il est associé aux autres sulfosels de Pb-Sb. Un petit cristal de forme losangique est visible à la figure 22. La plagionite a un

Planche 4: (4a) Sulfosel de Pb-Sb en section hexagonale terminé en pointe : photo 9807 de l'échantillon 2009sem61 - *BSE, 3000x, 20kv, 150pa* - (4b) ensemble de cristaux en aiguilles enchevêtrées de sulfosel de Pb-Sb : photo 8764 de l'échantillon 2009-sem34 - *BSE, 500x, 20kv, 450pa* - (4c) ensemble de cristaux enchevêtrées de sulfosel de Pb-Sb : photo 8767 de l'échantillon 2009-sem35 - *BSE, 700x, 20kv, 450pa* - (4d) cristaux de sulfosels de Pb-Sb en gerbe : photo 8755 de l'échantillon 2009-sem31 - *BSE, 2000x, 20kv, 450pa*.

rapport Sb/Pb variant entre 0,9 et 1,1. Cette phase n'a pas été identifiée dans les filons du puits II.

Robinsonite, Pb₄Sb₆S₁₃

Cette espèce n'a été mesurée qu'une seule fois dans la lame 361. La robinsonite y est en association avec la zinkénite et la plagionite (figure 22). La robinsonite a un rapport Sb/Pb de 0,9. Cette phase n'a pas été identifiée dans les filons du puits II.

Géocronite, Pb₁₄Sb₆S₂₃

La géocronite n'a été mesurée qu'une seule fois dans la lame 366. IL s'agit du sulfosel de Pb-Sb le plus riche en plomb que nous ayons mesuré à Goesdorf. Cette géocronite a la particularité d'être

Figure 17: Jamesonite en forme de pointe de crayon dans un enchevêtrement de cristaux aciculaires de jamesonite également : photo 8775 de l'échantillon 2009-sem36 - *BSE*, 4000x, 20kv, 450pa.

Figure 18: (18a) Longue aiguille de fülöppite (analyse 32) dans une matrice de sphalérite : photo de l'échantillon LMG351 - *BSE, 20kv, grossissement 200x* - (18b) section hexagonale dans un cristal de fülöppite (analyse 36) dans une matrice de sphalérite (analyses 37 et 38) : photo de l'échantillon LMG351 - *BSE, 20kv, grossissement 1000x*.

Figure 19: Tülöppite (analyse 48) et ullmannite (analyse 47) dans une plage de stibine : photo de l>échantillon LMG345 - *BSE, 20kv, grossissement 1000x.*

très pauvre en As, environ 0,3 % pds (figure 24). La géocronite a un rapport Sb/Pb variant entre 0,2 et 0,3 ; cette phase n'a pas été identifiée dans les filons du puits II.

Nous terminerons cette présentation des sulfosels de Pb-Sb par une représentation graphique des analyses microsondes dans le diagramme ternaire Pb – Sb – S présenté en figure 23. Ce graphique montre clairement l'enrichissement en plomb depuis la stibine jusqu'à la géocronite. Nous pouvons également conclure en soulignant que sur base de nos observations nous remarquons que : les sulfosels de Pb-Sb les plus courants à

Figure 20: Zinkenite (gris clair) montrant une cristallisation en aiguilles avec quelques exsolutions de plagionite (gris plus marqué) dans une masse de sphalérite (plus foncée) : photo 361-R2 de l'échantillon LMG361 - *BSE*, 20kv, grossissement 200x.

Goesdorf sont la fülöppite et la zinkénite ; que la plagionite est plus rare ; que robinsonite et géocronite sont extrêmement rares ; et que la jamesonite est surtout trouvée en association avec la berthiérite et la chalcopyrite.

Chalcostibite, CuSbS₂

Comme nous l'avions présenté en 2007, la chalcostibite se présente soit sous la forme de monocristaux assez trapus, soit sous la forme d'aiguilles en assemblages fibroradiés. Les monocristaux trapus (figure 25) sont partiellement altérés soit en cuals-

Figure 21: Zinkenite (analyses 51, 52, 55) avec quelques pointements de plagionite (analyses 53 et 54) remplissant une fracture dans la stibine (analyse 56) : photo LM07-19 de l'échantillon LM2007-19 - *BSE*, 20kv, grossissement 500x.

Figure 22: Plagionite en cristal losangique au centre (analyse 12) entouré de zinkénite (analyses 13, 14 et 18) avec un pointements de robinsonite (analyse 15) et un petit cristal d'ullmannite (analyse 17) : photo 361-R3 de l'échantillon LMG361 - *BSE, 20kv, grossissement 500x.*

Figure 23 : Diagramme ternaire Pb - Sb - S présentant les analyses des sulfosels de Pb-Sb de Goesdorf étudiés à la microsonde électronique.

Figure 24: Géocronite (analyses 27, 28), zone brillante en remplacement des bords d'une grande plage de stibine (analyse 26) : photo 361-R3 de l'échantillon LMG361 - *BSE, 20kv, grossissement 500x.*

Figure 25: Monocristal de chalcostibite bien formé et partiellement altéré en cualstibite dans une matrice de quartz, photo G. Niceus, largeur de l'image 3,2 mm.

Figure 26 : Chalcostibite, fragment de cristal isolé et son analyse eds montrant clairement les pics Sb, Cu et S : photo 9856 de l'échantillon 2009-sem86 - *BSE, 150x, 20kv, 150pa.*

tibite, soit en une autre phase que nous n'avons pas encore pu déterminer (indéterminé 2). Ces phases d'altération secondaires permettent une reconnaissance assez facile de l'espèce.

Plusieurs cristaux de chalcostibite ont été photographiés au MEB et mesurés à l'EDS (figure 26). L'ambiguïté possible entre la chalcostibite et les autres phases composées de Cu, Sb et S, soit la famatinite et la skinnerite, a été levée par diffraction de rayons X et ensuite par nos mesures à la microsonde électronique sur les lames LMG 361 et 366. Cette phase s'y retrouve en association

Figure 27: Chalcostibite (analyse 24), grande zone avec stibine (analyse 25) et un cristal de pyrite bien formé (plus sombre) : photo 366-R2 de l'échantillon LMG366 - *BSE, 20kv, grossissement 200x.*

avec la stibine, la fülöppite, la pyrite (figure 27) ; parfois aussi avec la berthierite en plus ; ou dans des quartz massifs avec sidérite et pyrite. Cette espèce rare n'a pas été identifiée dans les filons du puits II.

Kermesite, Sb₂S₂O

Comme nous l'avions relaté en 2007, la kermesite se présente sous forme de petits cristaux rouge vif. Cette phase avait déjà été citée par Heinen & Kronz en 1993. C'est un minéral classique des paragenèses d'antimoine en phase d'oxydation. Il peut est facilement confondu avec la metastibine. Nous avons réalisé de très nombreuses analyses de cette phase difficile à isolé par la taille des grains. Elle a été vérifiée par EDS et XRD.

Oxydes

Valentinite, Sb₂O₃

A Goesdorf, la valentinite est le principal minéral d'oxydation de la stibine. La variabilité des formes est énorme. Nous avons défini 5 habitus lors de nos observations à la loupe binoculaire (planche 5) et d'autres, ou des variations des premiers lors de nos observations au microscope électronique à balayage (planche 6). Pour l'habitus 1, les faces principales développées sont (110) et (011) de manière équivalente ; pour l'habitus 2, ce sont les faces (110) principalement et (011) ; pour l'habitus 3, c'est un prisme formé par (001) et (010) et terminé par (100) et (110) ; pour l'habitus 4, les faces principales développées sont (001), (100) et (110); pour l'habitus 5, ce sont les faces du prisme (100) et (001) terminé par (010) avec troncatures selon (011) et (110). Tous ces habitus sont schématisés à côté des photos de la planche 5.

Les cristaux sont rarement isolés, souvent ils se regroupent en éventails (assemblage radié). Ce regroupement pouvant être en rayons partiels ou complet, allant même jusqu'à former des boules lamellées ou fermées (planche 7). Cette planche

Figure 29 : Schéma de la reprise de croissance d'une valentinite sur une autre (mine du Lac Nicolet) - figure 21 de l'article de Robinson et Normand, 1996.

nous permet également d'apprécier la variété de couleurs de cette espèce.

Nous venons de voir sur les planches 5 et 7 que la couleur de la stibine varie énormément. Elle peut être incolore, blanche, jaune orangé, rouge (figure 28a) et même tricolore (figure 28b). Nous constatons également que certaines valentinites sont une reprise de croissance orthogonale d'une valentinite sur une autre, ce qui donne des structures en peignes assez spectaculaires, tant en photo optiques qu'au microscope électronique à balayage (planche 8). Les observations au microscope électronique et notamment les photos

Figure 28 : (28a) Valentinite rouge, photo G. Niceus, largeur de l'image 3,0 mm - (28b) valentinite tricolore jaune, orange et blanche (échantillon G167), photo G. Niceus, largeur de l'image 1,3 mm.

Planche 5: Principaux habitus des valentinites de Goesdorf (5a) habitus 1 de la valentinite (faces principales développées 110 et 011) - valentinite blanche en bipyramide, photo G. Niceus, largeur de l'image 1,9 mm - (5b) habitus 1 de la valentinite - cristal jaune transparent en assemblage multiple, photo G. Niceus, largeur de l'image 2,0 mm - (5c) Habitus 2 de la valentinite (faces principales développées 110 et 011) - cristal blanc parfaitement terminé sortant d'une boule de valentinite, photo G. Niceus, largeur de l'image 1,3 mm - (5d) habitus 3 de la valentinite (faces principales du prisme 001 et 010 et terminaison avec 100 et 110) - ensemble de cristaux blancs avec un encroutement rouge, photo G. Niceus, largeur de l'image 1,5 mm - (5e) habitus 4 de la valentinite (faces principales développées 001, 100 et 110) - cristal isolé flottant jaunâtre, photo G. Niceus, largeur de l'image 0,9 mm - (5f) habitus 5 de la valentinite (faces principales du prisme 100 et 001 terminé par 010 avec troncatures 011 et 110) - deux cristaux transparents isolés et biterminés, photo G. Niceus, largeur de l'image 1,47 mm.

Planche 6: (6a) Valentinite rouge avec un habitus différent : photo 7675 de l'échantillon 2009-sem06 - *BSE*, 410x, 20kv, 150pa - (6b) valentinite de l'habitus 1 : photo 9799 de l'échantillon 2009-sem59 - *BSE*, 800x, 20kv, 450pa - (6c) valentinite incolore du puits II présentant un habitus proche du 4 : photo 9881 de l'échantillon 2009-sem90 - *BSE*, 600x, 20kv, 450pa - (6d) valentinite incolore dont l'habitus est proche du 4 : photo 9884 de l'échantillon 2009-sem91 - *BSE*, 400x, 20kv, 450pa - (6e) valentinite jaune épaisse présentant un habitus encore différent : photo 9198 de l'échantillon 2009-sem45 - *BSE*, 500x, 20kv, 450pa - (6f) valentinite incolore ressemblant à l'habitus 1 mais avec le prisme (100, 001) fortement développé : photo 9877 de l'échantillon 2009-sem89 - *BSE*, 362x, 20kv, 450pa .

planche 8f et 8g montrent en détail comment cette reprise de croissance se fait. De telles reprises de croissance ont été décrites par Robinson et Normand en 1996 dans leur article sur la mine d'antimoine de Lac Nicolet au Québec (figure 29).

Sénarmontite, Sb₂O₃

Ce minéral polymorphe de la valentinite est plus rare que cette dernière. Signalé pour la première fois à Goesdorf par Heinen et Kronz en 1993, il se présente toujours sous la forme d'octaèdres quasi parfaits de 0,2 à 0,3 mm de diamètre. Ce minéral d'oxydation se trouve souvent dans de petites géodes du minerai de stibine de couleur jaunâtre. Ces octaèdres sont rarement isolés mais tapissent les géodes dans lesquelles ils se trouvent. Cette espèce a été confirmée par diffraction des rayons X et par analyse chimique (EDS et microsonde électronique). Les planches 9 et 10 présentent les variations de couleur et de taille des octaèdres, tant en photo optique qu'au microscope électronique à balayage. Nos analyses à la microsonde électronique ont montré que régulièrement la sénarmontite contient de l'arsenic. La sénarmontite de la lame LMG351 (filon f3 du puits II) contient jusqu'à 3,7 % pds As.

Stibiconite, Sb³⁺Sb⁵⁺₂O₆(OH)

Même si elle ne forme pas de beaux cristaux mais plutôt des encroutements, la stibiconite est une phase d'altération importante de la stibine. Elle forme une pellicule de couleur jaunâtre recouvrant partiellement ou entièrement les cristaux de stibine (photos planche 1a et 1d). Dans de rares cas, nous avons pu observer une pseudomorphose complète de la stibine en stibiconite.

Brandholzite, Mg[Sb(OH)₆]₂.6H₂O

Le minéral décrit en 2007 en plaquettes pseudohexagonales de 3 à 4 mm, blanches ou incolore, et striées sur la tranche s'est avéré être de la brandholzite. Cette brandholzite, nous l'avions référencée dans la publication de 2007 comme « indéterminé 2 » et décrite en 2009 (Filella *et al.*, 2009b). En 2010, Bakker et Kolitsch publient, dans la revue Lapis, un article sur la minéralogie de la mine et notamment sur la présence de brandholzite à Goesdorf en la référençant comme est la troisième occurrence mondiale. La brandholzite est une espèce décrite relativement récemment. Approuvée par l'IMA en 1998, la publication la décrivant date de 2000 (Friedrich *et al.*, 2000).

Les plaquettes de brandholzite sont souvent interpénétrées ; elles sont alors blanches au centre et incolores sur les bords. Nous avons récolté de nombreux échantillons de cette espèce et remarqué à nos dépends qu'elle était fortement soluble dans l'eau. La planche 11 présente les variations de taille des brandholzites de Goesdorf ainsi que des détails de structure.

Cualstibite, Cu₂Al(OH)₆[Sb⁵⁺(OH)₆]

Nous avons réalisé plusieurs prélèvements de la phase d'altération de la chalcostibite. Cette phase d'altération tait déjà problématique en 2007. Dans la publication, nous regroupions nos observations sous la description de l'indéterminé 3. De ces nombreuses analyses, il ressort que l'une des phases est la cualstibite. L'échantillon 2016-sem20 (G169) montre une analyse EDS avec la présence de Cu, Al, Sb et O et l'analyse par diffraction des rayons X montre les pics principaux de la cualstibite (4,89 – 4,17 – 2,33 et 1,79).

Tripuhyite, Fe³⁺Sb⁵⁺O₄

La tripuhyite est un minéral d'altération de la stibine dans la zone d'oxydation. Nous l'avons observée à la loupe, au microscope électronique et à la microsonde. En optique, elle se présente sous la forme de superbes boules jaunes orangées (figure 30).

Planche 7: (7a) Valentinite biterminée : la première terminaison est incolore et nette, la seconde est blanche et fibreuse (habitus 5), photo G. Niceus, largeur de l·image 1,3 mm - (7b) valentinites blanches transparentes en assemblage fibroradié peu fourni (habitus 2), photo G. Niceus, largeur de l·image 1,8 mm - (7c) ensemble de cristaux de valentinite formant un rayon partiel ou un nœud papillon, photo G. Niceus, largeur de l·image 1,3 mm - (7d) ensemble de l·image 1,30 mm - (7d) ensemble de valentinite jaunes en bouquet, photo G. Niceus, largeur de l·image 1,30 mm - (7e) bouquets fibroradiés dans toutes les directions de valentinite blanche jaunâtre, photo G. Niceus, largeur de l'image 3,2 mm - (7f) boule complète de valentinite jaune avec quelques cristaux dépassants, photo G. Niceus, largeur de l'image 2,6 mm - (7g) boules complètes de valentinite jaune en lamelles avec sénarmontite, photo G. Niceus, largeur de l'image 2,18 mm - (7h) boule de valentinite blanche en excroissance, photo G. Niceus, largeur de l'image 2,28 mm.

Planche 8: (8a) Valentinite en peignes parallèles comme les pages d'un livre, photo G. Niceus, largeur de l'image 1,3 mm - (8b) valentinite blanche en peigne sur une transparente (habitus 2 sur habitus 2), photo G. Niceus, largeur de l'image 1,12 mm - (8c) ensemble de cristaux de valentinite (habitus 6) en croissances parallèles sur un cristal de stibine, photo G. Niceus, largeur de l'image 1,51 mm - (8d) valentinite blanche en peigne, photo G. Niceus, largeur de l'image 2,00 mm - (8e) valentinite blanche en peigne, photo G. Niceus, largeur de l'image 2,00 mm - (8e) valentinite blanche en peigne, photo G. Niceus, largeur de l'image 1,40 mm - (8f) valentinite avec reprise de croissance terminale et latérale : photo 8545 de l'échantillon 2009-sem21 - *BSE, 400x, 20kv, 450pa* - (8g) valentinite montrant le début et l'extension de la reprise de croissance latérale : photo 9191 de l'échantillon 2009-sem44 - *BSE, 1500x, 20kv, 450pa*.

Planche 9: Différentes couleurs de la sénarmontite de Goesdorf. (9a) cristaux incolores transparents tapissant une géode, photo G. Niceus, largeur de l'image 2,0 mm - (9b) cristaux jaunes avec des stibines, photo G. Niceus, largeur de l'image 1,0 mm - (9c) gros cristaux incolores transparents, photo G. Niceus, largeur de l'image 1,2 mm - (9d) cristaux parfaitement octaédriques transparents avec des inclusions rouges, photo G. Niceus, largeur de l'image 3,0 mm.

L'échantillon photographié à la figure 30 a été analysé (2009-sem98). La photo au microscope électronique de ce dernier est présentée à la planche 12a. L'analyse EDS indique les éléments Fe-Sb-O. Dans la lame LMG348, lors de nos analyses à la microsonde électronique, nous avons un grand nombre de tripuhyites dans la zone d'encaissant du filon (f2). Il s'agit de couronnes de tripuhyite entourant des masses de carbonates de Fe-Mg, type sidérite. Il doit probablement s'agir d'un phénomène de pseudomorphose (planche 12b). L'échantillon 2009-sem73, analysé à l'EDS Sb-Fe-O a été vérifié par diffraction des rayons X comme tripuhyite en 2016.

Figure 30: Superbe boule jaune orangée de tripuhyite, photo G. Niceus, largeur de l'image 1,60 mm.

Figure 31: très fins vermicules de schafarzikite associés aux plaquettes de brandholzite : photo Uni Lausanne -BSE, 605x, 20kv

Figure 32: filaments rouges de schafarzikite analysés à l'eds : photo 0054 (Jeol 5000) de l'échantillon 2010sem08 - BSE, 110x, 10kv, 150pa

Planche 10: La sénarmontite de Goesdorf vue au MEB (10a) tapis d'octaèdres de sénarmontite en fond de géode : photo 8374 de l'échantillon 2009-sem25 - *ES*, 200x, 20kv, 150pa - (10b) géode remplie de cristaux de sénarmontite : photo 8548 de l'échantillon 2009-sem27 - *ES*, 1000x, 20kv, 150pa - (10c) sénarmontite en fond de géode : photo 8029 de l'échantillon 2009-sem15 - *BSE*, 500x, 20kv, 650pa.

Planche 11: Différentes tailles et formes de la brandholzite de Goesdorf (11a) deux cristaux accolés, incolores et transparents sur les bords et blancs au centre (échantillon G188), photo *indéterminé 2* Ferrantia 49, largeur du cristal 3,0 mm *NC04* - (11b) cristal parfaitement hexagonal semi transparent, photo G. Niceus, largeur de l'image 2,41 mm - (11c) vue coté tranche d'un cristal de brandholzite montrant l'aspect strié, voir fibreux, photo G. Niceus, largeur de l'image 1,10 mm - (11d) cristaux empilés et interpénétrés, photo G. Niceus, largeur de l'image 1,30 mm - (11e) ensemble de cristaux en hexagones étirés : photo 9111 de l'échantillon 2009-sem37 - *BSE, 750x, 20kv, 150pa*.

Planche 12: Différentes tripuhyites de Goesdorf (12a) boules jaunes de tripuhyite analysées à eds : photo 9972 de l'échantillon 2009-sem98 - *ES*, 300x, 20kv, 150pa -(12b) nombreuses couronnes de tripuhyites qui remplacent (phénomène de pseudomorphose) des sidérites : 348-R2 de l'échantillon LMG348 - *BSE*, 500x, 20kv, 450pa.

Figure 33: (33a) Cristaux idiomorphes de bindheimite analysés par eds : photos 001 (130x) et (33b) photo 002 (340x) de l'échantillon 2010-sem13 - *BSE, 20kv.*

Schafarzikite, $Fe^{2+}Sb^{3+}_{2}O_{4}$

La schafarzikite a été analysée par N. Meisser (Lausanne) en association avec la brandholzite. Elle se présente sous la forme de tout fins vermicules (figure 31). Une autre schafarzikite analysée à l'EDS se présente quant à elle sous la forme de filaments rouges (figure 32).

Bindheimite, Pb₂Sb₂O₆(0,OH)

La bindheimite est un minéral secondaire des zones d'oxydation des minerais de Pb-Sb. Apparemment l'espèce n'est pas adéquatement décrite et serait sujette à correspondre à l'oxyplumboroméite décrite récemment. La bindheimite étant toujours valide, nous nommerons cette espèce ainsi. Elle a normalement une couleur jaune mais à Goesdorf nous l'avons trouvée sous la forme de cristaux idiomorphes de 200 μ m de longueur et de couleur blanc jaune ; ou sont la forme d'aiguilles jaune orange. Les cristaux idiomorphes ont été trouvés dans les échantillons 2010-sem13 (figure 33) et 2009-sem92 (figure 34). Leur spectre EDS montre les éléments Sb-Pb-O. Les aiguilles jaune orange de l'échantillon 2009-sem74 ont été analysées par EDS et vérifiées par diffraction des rayons X en 2016.

Figure 34: Cristal partiellement corrodé de bindheimite analysé par eds, avec sénarmontite en avant plan : photo 019 de l'échantillon 2009-sem92 - *BSE*, 240x, 10kv, 150pa.

Figure 36: Rutile avec de nombreuses macles en genoux, photo en lumière réfléchie de l'échantillon LM2007-12 - grossissement 2000x.

Cetineite, $Na_{3,6}(Sb_2O_3)_3(SbS_3)$ (OH)_{0,6}.2,4H₂O

La cetineite décrite en Italie en 1987 est une espèce assez particulière car il s'agit d'un oxy-sulfure. Cette espèce de couleur rouge jaunâtre se présente sous la forme de boules d'aiguilles. A Goesdorf, cette espèce est extrêmement rare et le MnhnL n'en a qu'un seul échantillon en collection. Nous avons eu l'occasion d'analyser par EDS l'échantillon 2011-sem002 (Na-Sb-S-O) et d'en réaliser une photographie (figure 35).

Figure 35: Superbe boule jaune orangée de cetineite de Goesdorf, photo G. Niceus, largeur de l'image 2,2 mm.

Rutile, TiO₂

Mise en évidence à la microsonde électronique, cette phase se situe au niveau des épontes des filons. On retrouve du rutile dans les échantillons LM2007-12 (G50), LM-2007-10 (G6) et dans la lame LMG349 d filon f2 mais alors dans la gangue de schiste. Un superbe échantillon de rutile maclé (macle en genoux) provenant de l'échantillon LM2007-12 est présenté à la figure 36 à un grossissement de 2000x.

Quartz, SiO₂

Le quartz est le minéral le plus courant de la gangue à Goesdorf. Il est souvent cristallisé de manière palissadique perpendiculairement aux épontes des filons. En 2007, nous signalions deux générations de quartz. La première en cristaux laiteux de 2 à 3 cm, en pyramides hexagonales avec des faces plagièdres, les quartz palissadiques ont probablement cristallisés avant les carbonates et la stibine. La seconde génération en cristaux euhédraux souvent hyalins, est postérieurs ou synchrones à la minéralisation en stibine (figure 37). Certains quartz hyalins peuvent même avoir des inclusions de stibine sous forme de goutte-lettes (figure 38).

Figure 37: Quartz hyalin biterminé dans la stibine, photo G. Niceus, largeur de l'image 2,12 mm.

Goethite, FeOOH

Ce minéral se trouve en encroutements rougeâtres sur la pyrite.

Hématite, Fe₂O₃

Ce minéral a été identifié par diffraction des rayons X et à la microsonde électronique dans des ensembles d'oxydes de Fe-Mn aux épontes de filons altérés. Elle résulte probablement de l'altération des carbonates et d'argiles.

Todorokite, (Na,Ca,K,Ba) (Mn,Mg,Al)₆O₁₂.3-4H₂O

Ce minéral a été identifié par diffraction des rayons X dans des ensembles d'oxydes de Fe-Mn aux épontes de filons altérés. Elle résulte probablement de l'altération des carbonates et d'argiles.

Sulfates

En 2007, nous n'avions signalé aucun sulfate de Sb car ceux-ci ont été trouvés à postériori dans les échantillons du puits II. Dans nos articles de 2009 (Filella *et al*, 2009 a et 2009b) nous présentons les proportions relatives entre sulfates de Sb et oxydes de Sb dans les phases secondaires. Nous abordons le sujet des conditions de formation même si dans le détail celle-ci sont mal connues.

Figure 38: Quartz hyalin avec des inclusions en 'gouttede stibine (analysée en section polie), photo G. Niceus, largeur de l'image 3,35 mm.

Klebelsbergite, Sb₄O₄(SO₄)(OH)₂

La klebelsbergite se présente en agrégats ou touffes de fins cristaux aciculaires allongés selon (001) ou aplatis selon (010) pour former des lamelles (Nakai & Appleman, 1980). Ils sont incolores, blancs, blancs jaunâtres et parfois rouges. La planche 13 nous montre la grande variabilité de couleurs de ce minéral. La planche 14 nous permet d'avoir une approche plus en détail sur les terminaisons des cristaux de klebelsbergite. Les ensembles de cristaux bien développés tels que présentés ici sont relativement rares.

Figure 39: Boule blanche de coquandite formée de très fins cristaux dont certains sont beaucoup plus long, photo G. Niceus, largeur de l'image 1,40 mm.

Planche 13: Différentes formes et couleurs de la klebelsbergite de Goesdorf - (13a) cristaux aciculaires de klebelsbergite accolés, photo G. Niceus, largeur de l'image 2,2 mm - (13b) ensemble de cristaux aciculaires blancs de klebelsbergite dans une géode de coquandite, photo G. Niceus, largeur de l'image 2,5 mm - (13c) cristal aciculaire isolé orange de klebelsbergite sur un sulfosel de Pb-Sb, photo G. Niceus, largeur de l'image 1,8 mm - (13d) ensemble de cristaux aciculaires incolores et transparents de klebelsbergite dans une géode de carbonates, photo G. Niceus, largeur de l'image 2,41 mm - (13e) aiguilles de klebelsbergite rouge avec des valentinites rouges, photo G. Niceus, largeur de l'image 2,50 mm.

Planche 14: La klebelsbergite de Goesdorf vue au MEB - (14a) cristaux parfaitement terminés de klebelsbergite en gerbe analysés par eds : photo 07 de l'échantillon 2011-sem18 - *BSE*, *54x*, *10kv* - (14b) cristaux parfaitement terminés de klebelsbergite en gerbe analysés par eds : photo 04 de l'échantillon 2011-sem29 - *BSE*, *90x*, *10kv* - (14c) zoom sur un des cristaux de la photo 14b montrant la terminaison : photo 01 de l'échantillon 2011-sem39 - *BSE*, *300x*, *10kv* - (14d) vue de détail de cristaux de klebelsbergite : photo 8561 de l'échantillon 2009-sem30 - *BSE*, *2000x*, *20kv*, *450pa* - (14e) vue de détail de cristaux de klebelsbergite : photo 8565 de l'échantillon 2009-sem28 - *BSE*, *1000x*, *20kv*, *450pa* - (14f) vue de détail de cristaux de klebelsbergite rouge : photo 9747 de l>échantillon 2009-sem52 - *BSE*, *400x*, *20kv*, *450pa*.

FIG. 2. Typical habit of a coquandite crystal from Pereta. Forms are: b {010}, c {001}, s {210}, n {1,12.0}.

Planche 15: La coquandite de Goesdorf vue au MEB (15a) cristaux parfaitement formés en lamelles très fines de coquandite : photo G401_5b de l'échantillon 2009-sem16 - BSE, 1680x, 10kv - (15b) dessin de l'habitus typique de la coquandite de Pereta selon Sabelli et al.,1992 - (15c) boule incomplète d'aiguilles de coquandite analysées à l'eds : photo 695 de l'échantillon 2010-sem33 - SE, 380x, 20kv - (15d) boule de coquandite analysée sur cristal de sénarmontite : photo 9808 de l'échantillon 2009-sem66 - BSE, 500x, 20kv, 450pa.

Figure 40: Or natif en plaquage associé à la stibine et au quartz (échantillon 2012-sem06), photo G. Niceus, largeur de l'image 2,12 mm.

Coquandite, $Sb_{6+x}O_{8+x}(SO_4)(OH)_x(H_2O)_{1-x}$ (x=0,3)

La coquandite se présente en touffes de très fins cristaux blancs aciculaires formant des tapis ou des boules (figure 39). Si nous allons dans le détail de l'observation de la morphologie de cette espèce, la photo 15a de la planche 15 correspond vraiment bien à l'habitus typique (lamelles très fines) de la coquandite de Pereta présenté dans la publication de Sabelli *et al.* (1992). Cet habitus est présenté à la planche 15 également (photo 15b). Les autres photos de la planche 15 (15c et 15d) présentent cette forme en boule composées de micro-aiguilles.

Peretaite, $Ca(SbO)_4(SO_4)_2(OH)_2.2H_2O$

Ce minéral est observé dans les zones de minerai plus riche en carbonates. Il se présente sous la forme de fines lamelles. Selon Cipriani *et al.* (1980a et b), la peretaite est pratiquement toujours maclée selon (100). Nos observations au MEB tendent à aller dans le même sens. Ces observations nous ont permis également de montrer que l'habitus décrit par Menchetti *et al.* (1980) (figure 3) est le plus représenté à Goesdorf. La planche 16 montre clairement ces observations optiques et au MEB.

Figure 41: Cristal pseudo rhomboédrique d'antimoine natif sur des aiguilles parallèles de sulfosels de Pb-Sb: photo 8370 de l'échantillon 2009-sem26 - *ES, 600x, 20kv, 150pa.*

WD= 25 mm Mag= 500 2 Photo No.=9801 Detector= QBSI

Planche 16: La peretaite de Goesdorf vue en optique et au MEB - (16a) lamelles nacrées transparentes (maclées ?) de peretaite, photo G. Niceus, largeur de l'image 3,0 mm - (16b) lamelles nacrées transparentes présentant un effet de dentelle ou de tissage, photo G. Niceus, largeur de l'image 1,8 mm - (16c) ensemble de lamelles nacrées, photo G. Niceus, largeur de l'image 1,6 mm - (16d) vue de détail d'un cristal de peretaite présentant l'habitus le plus courant, cf. 16e : photo 06 de l'échantillon 2009-sem17 - *BSE*, 2500x, 15kv, 672pa - (16e) dessin de l'un des habitus typiques de la peretaite de Pereta selon Manchelli *et al.*,1980 - (16f) cristaux maclés de peretaite : photo 9801 de l'échantillon 2009-sem60 - *BSE*, 500x, 20kv, 450pa.

Planche 17: L'anglésite de Goesdorf vue en optique et au MEB. (17a) cristaux d'anglésite en tablettes transparents sur les bords, photo G. Niceus, largeur de l'image 1,41 mm - (17b) cristaux biterminés transparents d'anglésite, photo G. Niceus, largeur de l'image 1,23 mm - (17c) druse de cristaux brunâtres d'anglésite, photo G. Niceus, largeur de l'image 1,50 mm - (17d) vue de détail d'un cristal d'anglésite: photo 02 de l'échantillon 2011-sem28 - *BSE, 600x, 10kv* - (17e) vue d'un cristal parfait d'anglésite: photo 04 de l'échantillon 2011-sem28 - *BSE, 440x, 10kv* - (17f) vue d'un cristal parfait d'anglésite montrant un troisième habitus : photo 06 de l'échantillon 2011-sem28 - *BSE, 540x, 10kv*.

Anglésite, PbSO₄

L'anglésite se trouve en association des minéralisations en Pb-Sb. A la microsonde électronique, nous l'avons observée dans l'échantillon LMG351 provenant du filon f3. Plusieurs photos optiques montrent des cristaux bien développés transparents, blancs ou brunâtres en tablettes épaisses. Au MEB, c'est l'échantillon 2011-sem28 qui nous a permis de voir les plus belles variations de formes pour cette espèce. La planche 17 montre ces observations tant en optique qu'au MEB.

Gypse, CaSO₄.2H₂O

Le gypse n'est pas un minéral très fréquent à Goesdorf. En général, il est le résultat de la décomposition de sulfures en présence de carbonates de calcium. Nous l'avons principalement observé associé à l'altération de la pyrite sous la forme de cristaux en tablettes de 2 à 3 mm de long. La forme des cristaux est tout à fait classique. Nous n'avons eu l'occasion d'observer le gypse qu'une seule fois en association avec la stibine. La photo de cet échantillon a été présentée à la planche 1 (photo 1e). Enfin, tout au fond de la galerie d'exhaure, au pied du puits d'extraction principale, une mylonite extrêmement riche en gypse a été observée. Malheureusement plus aucun sulfure n'a pu être distingué dans ces échantillons.

Eléments

Or, Au

Dans notre publication de 2007, nous signalions que dans les collections du musée, un échantillon de stibiconite sur quartz présentait des traces d'or. Cet échantillon est noté comme ayant été trouvé en 1893 à l'époque des travaux dans la mine par Westhofen (Philippo & Hanson, 2007). Depuis lors, un seul échantillon présentant un très fin plaquage d'or a pu être observé et analysé à l'EDS (échantillon 2012-sem06). Sur cet échantillon, l'or est associé à la stibine dans une matrice de quartz (figure 40).

Antimoine, Sb

Nous n'avons eu l'occasion d'observer et d'analyser un cristal d'antimoine natif qu'une seule fois.

Figure 42: Lamelles brunâtres ondulantes (rhomboèdres) de sidérite dans le quartz, photo G. Niceus, largeur de l'image 2,0 mm.

Il avait une forme de cristal pseudo-rhomboédrique d'un peu plus de 100 μ m associé à des sulfosels de Pb-Sb (figure 41).

Soufre, S

Le soufre est régulièrement associé avec la valentinite et la sénarmontite. Il se présente en cristaux transparents ou jaunes dépassant rarement 0,2 mm de longueur. Il forme des cristaux bien terminés, des cristaux squelettiques (faces creuses liées à une croissance rapide), et montre parfois des formes atypiques comme des aiguilles. La planche 18 montre ces observations tant en optique qu'au MEB.

Phosphates

Apatite, Ca₅(PO₄)₃ (F,Cl,OH)

L'apatite a été observée (une seule fois), et analysée à l'EDS, dans les épontes de filon (échantillon LMG349, filon f2) associée à la chlorite dans une matrice de quartz, pyrite et carbonates.

Pyromorphite, Pb₅(PO₄)₃Cl

La pyromorphite a été observée (une seule fois), et analysée à l'EDS, sous la forme de cristaux blancs verdâtres aciculaires dans l'échantillon 2009-sem96. Elle était associée à des sulfosels de Pb-Sb.

Planche 18: Le soufre de Goesdorf vue en optique et au MEB. (18a) gros cristal de soufre jaunâtre bien cristallisé, photo G. Niceus, largeur de l'image 1,0 mm - (18b) ensemble de cristaux jaunes clair montrant des formes bien développées, photo G. Niceus, largeur de l'image 2,12 mm - (18c) ensemble de cristaux de soufre bien cristallisés, photo G. Niceus, largeur de l'image 2,50 mm - (18d) cristal de soufre en aiguille tordue: photo 9737 de l'échantillon 2009-sem50 - *BSE, 300x, 20kv, 450pa* - (18e) cristal aplati de soufre associé avec la coquandite (association extrêmement rare): photo 03 de l'échantillon 2010-sem010 - *BSE, 240x, 10kv*.

Carbonates

La gangue carbonatée est composée de plusieurs carbonates de Mg-Fe et de calcite. Ces phases ont été vérifiées par diffraction des rayons X (ankérite, calcite, dolomite et sidérite) et par microsonde électronique (dolomite et sidérite).

Calcite, CaCO₃

Elle se présente en scalénoèdres ou rhomboèdres de couleur jaune. C'est un minéral important de la gangue qui remplit les cavités de quartz.

Sidérite, FeCO₃

C'est le carbonate de Fe-Mg le plus courant. Il se présente sous la forme de rhomboèdres à surface ondulante de couleur brunâtre (figure 42). On le retrouve associé aux autres carbonates de Fe-Mg et à la calcite dans le quartz.

Dolomite, CaMg(CO₃)₂

Elle se présente en cristaux blanchâtres et est associée à la sidérite et l'ankérite.

Ankérite, Ca(Mg,Fe)(CO₃)₂

Elle se présente en tout petits cristaux, dont l'identification a été confirmée par diffraction des rayons X.

Figure 43: Cristal bien formé de zircon dans la roche encaissante dans l'échantillon LM20017-12 (G50), vue au microscope pétrographique, grossissement 100x.

Figure 44: Cristal bien formé de zircon dans le minerai de stibine dans l'échantillon LMG349 (filon f2), vue au microscope pétrographique en lumière naturelle, grossissement 320x.

Malachite, Cu₂CO₃(OH)₂

La malachite se présente en encroutements de couleur verte. Nous l'avons vérifiée par EDS et diffraction des rayons X. C'est la phase d'altération de la chalcopyrite et parfois de la chalcostibite.

Silicates

Zircon, ZrSiO₄

Le zircon a été observé plusieurs fois dans les lames polies. Il est facilement reconnaissable par sa cathodoluminescence induite par le faisceau d'électrons. Nous avons néanmoins procédé à chaque fois à une analyse EDS. Nous l'avons localisée dans la roche aux épontes du minerai (figure 43) ainsi qu'au milieu du minerai de stibine (figure 44).

Chlorite (clinochlore) (Mg,Fe)₅Al(Si,Al) $O_{10}(OH)_8$

Le clinochlore se présente sous la forme d'agrégats microscopiques en forme de sphéroïde. On le trouve principalement dans les zones d'éponte. Nous l'avons signalé ci-dessus en association avec l'apatite. Ce minéral a été vérifié par EDS et diffraction des rayons X.

Figure 45: Superbe échantillon de cristaux rouges non identifiables de manière certaine, photo G. Niceus, largeur de l'image 1,6 mm.

Illite, $K_{0,65}Al_2$ [] $Al_{0,65}Si_{3,35}O_{10}(OH)_2$

Cette argile que l'on retrouve aux zones d'épontes (salbandes) a été identifiée par diffraction des rayons X. Son contenu en éléments en trace a été publié en 2007 (Philippo et Hanson, 2007). Nous le reprenons ci-dessous : Cr 0,015% ; Ni 0,007% ; Rb 0,015% ; Sr 0,015% ; Zr 0,03% ; Ba 0,04% ; La 0,01% et Ce 0,02%.

Kaolinite, Al₂Si₂O₅(OH)₄

La kaolinite, apparemment sa variété dickite (mais sans plus de précision) a été analysé par diffraction des rayons X.

Calcédoine, SiO₂.nH₂O

Des zones de silice amorphe ont été vérifiées par EDS. Elles sont souvent incolores et mamelonnées.

Indéterminés

Indéterminé 1 : autre phase d'altération de la chalcostibite

Nous avons vu ci-dessus lors de la description de la cualstibite que la problématique de la phase d'altération de la chalcostibite n'est pas nouvelle. Nous avons pu identifier à ce jour au moins deux phases d'altération, mais il reste des questions sur d'autres. La première phase d'altération de la chalcostibite est la cualstibite, notamment sur l'échantillon 2016-sem20.

Les analyses EDS de l'échantillon 2009-sem12 montrent un carbonate de cuivre, fort probablement la malachite pour la seconde.

Les questions qui restent en suspens sont les suivantes :

dans le diffractogramme de poudres de l'échantillon 2016-sem20, il reste des pics non identifiés à 11,72 Å et 7,95Å

les échantillons 2009-sem87 et 2009-sem09 montrent des analyses EDS donnant Cu-Sb-O ce qui pourrait correspondre à la partzite $Cu_2Sb_2(O,OH)_7$. Néanmoins le diffractogramme de poudres de rayons X du 2009-sem87 ne fournit que 2 pics formellement identifiables à celle-ci... les autres n'ayant pas encore pu être indexés.

Nous aimerions aller plus loin dans cette étude, Malheureusement nous n'avons plus en collection de chalcostibites sur lesquelles nous puissions faire de nouveaux prélèvements.

Indéterminé 2 : autre phase d'altération rouge

Les phases d'altération rouge de la stibine sont également problématiques et à étudier au cas par cas. Nous avons vu des valentinites rouges, des klebelsbergites rouges... certains échantillons sont identifiés comme kermesite, d'autres comme metastibine... Toutes ces espèces avant été

Figure 46: Cristal en plaquette de 300 µm non identifié: photo 140 de l'échantillon 2016-sem41 - ES, 170x, 15kv. vérifiées par EDS et par diffraction des rayons X ; elles sont valides.

Il nous reste cependant certains cas avec des échantillons fort bien cristallisés et pour lesquels aucune des déterminations reprises ci-dessous ne correspondent. C'est le cas des cristaux de la figure 45, les analyses tendent à les qualifier de kermesite (EDS : Sb-S-O) mais le diffractogramme de poudres ne correspond à rien.

Indéterminé 3

L'échantillon 2016-sem41 fourni un cristal en plaquette bien cristallisé et transparent de 300 μ m de longueur (figure 46). Les analyses EDS fournissent les éléments suivants : Sb-S-O-Al. Nous avons également obtenu un très bon diffractogramme de poudres que nous n'arrivons pas à indexer. Voici les valeurs *d* et les intensités de ce diffractogramme :

 $\begin{array}{l} 8.08 \hspace{0.1cm}(5) - 5,00 \hspace{0.1cm}(6) - 4,26 \hspace{0.1cm}(10) - 3,81 \hspace{0.1cm}(8) - 3,33 \hspace{0.1cm}(9) - 2,99 \hspace{0.1cm}(6) - 2,71 \hspace{0.1cm}(5) - 2,20 \hspace{0.1cm}(3) - 2,15 \hspace{0.1cm}(3) - 2,04 \hspace{0.1cm}(5) - 1,88 \hspace{0.1cm}(2) - 1,79 \hspace{0.1cm}(2) - 1,70 \hspace{0.1cm}(2) - 1,62 \hspace{0.1cm}(3) - 1,49 \hspace{0.1cm}(2) \hspace{0.1cm} \mathring{A} \end{array}$

Métallogénie

Dans notre chapitre lié au nouvel échantillonnage, nous avons vu que le puits II nous avait permis d'accéder à des filons directement en place. Ils sont au nombre de cinq. Les échantillons prélevés ont été étudiés en lames minces et à la microsonde électronique. Le filon f1a est composé de pyrite, stibine et berthiérite. Le filon f1b est composé de pyrite uniquement. Le filon f2 est composé de pyrite, stibine, sphalérite, berthiérite, jamesonite, chalcopyrite, ullmannite. Le filon f3 est composé de stibine, sphalérite et fülöppite. Le filon f3b est composé de stibine et sphalérite. Le filon f4 est composé de stibine et chalcopyrite. Le filon f5 est composé de pyrite, stibine, sphalérite, chalcopyrite et berthiérite. Et la jonction des filons f5 et f1 est composée de pyrite, stibine et sphalérite. Aucun de ces filons ne contient de chalcostibine. L'ensemble de ces données a été compilé sur le schéma de la figure 3 et présenté à la figure 48. En synthétisant les métaux exprimés dans cette minéralogie, nous voyons également que les filons f2 et f3 sont constitués de Sb, Zn et Pb. Le filon f2 contient en plus du Fe, Cu et Ni. Le filon f4 uniquement Sb et Cu ; f5 contient Sb, Zn, Fe et Cu et

f1 uniquement Sb et Fe. Seul le filon f1 exprime donc une minéralogie simple à antimoine et pyrite.

L'analyse des deux photos de lames minces présentées à la figure 47 nous apprend énormément sur la manière dont ces minéraux sont répartis en interne. La lame LMG343 (figure 47a) montre une pyrite au contact avec la roche encaissante schisteuse. Cette pyrite est très fortement fracturée. Nous pouvons même redessiner les lignes de fissuration de celle-ci. La minéralisation sous la fracture principale est composée de minéraux de Sb, Fe et Cu (stibine avec berthiérite). Nous pouvons donc en déduire que la minéralisation en pyrite a été fracturée et qu'un fluide antimonifère a déposé de la stibine massive et que la réaction avec le Fe des pyrites a formé la berthiérite. La lame LMG351 (figure 47b) est composée essentiellement de stibine et de quartz. Nous voyons clairement des fissures sinueuses à travers celle-ci. Ces fissures sont remplies de sulfosels de Pb-Sb (fülöppite) et de sphalérite. Nous pouvons donc en déduire que la minéralisation en stibine a été fracturée et qu'un fluide plombifère et zincifère a permis de former cette nouvelle minéralogie.

Figure 47: (47a) Lame mince LMG343 : pyrite fracturée et minéralisation en stibine et berthiérite - (47b) lame mince LMG351 : minéralisation en stibine fracturée et reminéralisée en fülöppite et sphalérite.

Figure 48: Schéma du puits II avec représentation des différents filons, des failles et des salbandes ; croquis des filons f2 et f4 - compilation des minéraux déterminés par filons et des éléments analysés pour chacun d'entre eux.

Ces observations nous permettent de penser que les premiers filons mis en place à Goesdorf sont des filons de pyrite uniquement (semblables au filon f1b). Ces filons ont été fissurés et la minéralisation en antimoine s'est alors mise en place. Cette minéralisation s'exprime essentiellement sous forme de stibine avec des traces de berthiérite. Cette minéralisation a été fissurée à son tour et des fluides plombifères ont réagis avec la stibine pour former la série de sulfosels de Pb-Sb que nous avons décrits. Il s'agit donc d'un phénomène de surimposition : un évènement à Pb qui remanie celui à Sb. Comme la sphalérite est pauvre en Fe, on peut penser que fort probablement, selon Yves Moëlo (comm. pers.), Zn est contemporain de Pb. La réaction de Cu sur la berthiérite formant de la chalcopyrite ou de la chalcostibite est un évènement appelé 'chalcopyrite disease'. C'est la mise en solution plus ou moins forte de Fe qui détermine si l'on forme la chalcopyrite ou la chalcostibite. Il s'agit donc d'un évènement Pb-Zn-Cu et Ni (ullmannite) qui est probablement épithermal. C'est lors de cet évènement que la stibine secondaire (de néoformation) se forme également.

Il est intéressant à noter pour cet évènement du Pb qui remanie le Sb que les sulfosels que nous avons observés précipitent systématiquement dans un ordre du rapport Pb/Sb croissant en se remplaçant mutuellement (Kosakevitch & Moëlo, 1982). Selon les mêmes auteurs, le long des fissures ouvertes le maintien d'une concentration élevée en Pb est propice au développement de cette séquence de sulfosels à Pb/Sb croissant. Au contraire, dans les réseaux fissures de la stibine massive, le rapport Pb/Sb se maintient à des valeurs basses. C'est bien ce que nous avons observés dans la lame LMG351 avec le développement exclusif de la fülöppite.

En résumé, nous avons donc à Goesdorf trois stades de minéralisation :

stade 1 : ferro-arsénifère (pyrite riche en As (cf figure 7) et gangue de quartz)

stade 2 : antimonifère (stibine et gangue de quartz)

stade 3 : évènement à Pb, Zn, Cu (Ni) (sulfosels de Pb-Sb, sphalérite, chalcopyrite, chalcostibite, ullmannite)

D'autres minéralisations semblables à celle de Goesdorf sont connues, notamment, en Allemagne à Ahrbruck, Altenhar et St Johann dans l'Eifel (Wagner & Cook, 2000) ou encore Wolfsberg dans le Harz ; en France à Bournac dans l'Hérault (Munoz & Moëlo, 1982), à Lepuix-Gy dans les Vosges (Marcoux & Moëlo, 1991) ou encore à Beg ar Galez dans le Finistère (Chauris *et al*, 1977). Toutes ces minéralisations sont mises en place dans des terrains hercyniens.

Dans le socle hercynien du massif schisteux rhénan, Wagner & Cook (2000) concluent sur la mise en place des minéralisations à quartz-stibine dans des phases tardives postérieures au paroxysme du cycle de plissement hercynien, épisode qui correspond à une phase d'extension sans liaison flagrante avec des phénomènes magmatiques. La mise en place lors de la phase d'extension a l'avantage d'expliquer la localisation des minéralisations en quartz-stibine dans les structures ouvertes, faillées et fracturées comme c'est le cas également à Goesdorf. L'étude des gisements les plus proches en Eifel (Ahrbruck, Altenhar et St Johann) montre l'importance de ces structures pour la mine en place des minéralisations, le métallotecte (Wagner & Cook, 2000 ; Wagner & Schneider, 2002 et Wagner & Boyce, 2003).

Les minéralisations en antimoine de type veines du massif schisteux rhénan sont décrites dans plusieurs articles de Wagner (2000, 2002 et 2003). Il précise qu'il existe d'une part un système de veines d'extension minéralisées en quartz et stibine et d'autre part, un assemblage de sulfosels (Cu)-Pb-Sb en surimposition d'un système de veines Pb-Zn préexistant. A Goesdorf, la surimposition des sulfosels se fait directement sur les veines à quartz et stibine. Par contre, les processus décrits pour Lepuix-Gy dans les Vosges (Marcoux & Moëlo, 1991) correspondent quasi à l'identique avec ceux que nous avons vu à Goesdorf.

Une étude complète des paléofluides des minéralisations luxembourgeoises, incluant bien sûr la minéralisation de Goesdorf, est en cours. Les données relatives aux inclusions fluides et les conclusions locales et régionales sont en cours de rédaction. Nous avons par cette étude essayé de répondre aux questions relatives à l'origine des fluides minéralisateurs posées dans les conclusions du Ferrantia 49 relatif à la minéralisation de Goesdorf (Philippo & Hanson, 2007).

Bibliographie

- Bakker R. & Kolitsch U. 2010. Weltweit drittes Vorkommen von Brandholzit : Die Antimon-Grube von Goesdorf in Luxembourg, Lapis 30 : 43-45.
- Buzatu A., Damian G., Dill H.G. & Apopei A.I.
 2015. Mineralogy and geochemistry of sulfosalts from Baia Sprie ore deposit (Romania)
 New bismuth minerals occurrence. Ore Geology Reviews 65(1):132-147.
- Chauris L., Fouquet Y. & Moëlo Y. 1977. Les occurrences antimonifères de l'êle de Sein et du Cap Sizun (Finistère). Leur place dans la métallogénie armoricaine. Bull. Soc. fr. Minéral. Cristallogr. 100 : 208-213.
- Cipriani N, Menchetti S, Orlandi P, Sabelli C. 1980a. Peretaite, CaSb₄O₄(OH)₂.2H₂O, a new mineral from Pereta, Tuscany, Italy. Am. Mineral. 65: 936–9.
- Cipriani N, Menchetti S, Sabelli C. 1980b. Klebelsbergite and another antimony mineral from Pereta, Tuscany, Italy. Neues Jahrb. Mineral. Monatsh. 223–229.
- Filella M., Chanudet V., Philippo S. & Quentel F. 2009a. Particle size and mineralogical composition of inorganic colloids in waters draining the adit of an abandoned mine, Goesdorf, Luxembourg, Applied Geochemistry 24(1): 52-61.
- Filella M., Philippo S., Belzile N., Chen Y-W. & Quentel, F. 2009b. Natural attenuation processes applying to antimony: a study in the abandoned antimony mine in Goesdorf, Luxembourg, Science of the Total Environment 407 : 6205-6216.
- Friedrich A, Wildner M, Tillmanns E, Merz PL. 2000. Crystal chemistry of the new mineral brandholzite, M²⁺(H₂O)₆[Sb(OH)₆]₂, and of the synthetic analogues Mg(H₂O)₆[Sb(OH)₆]₂ (M²⁺=Mg, Co). American Mineralogist 85: 593–599.
- Heinen G. & Kronz G. 1993. Die Mineralien des Oeslings. Numéros hors-série de l'AGMP 1, 19 p.
- Kosakevitch A. & Moëlo Y. 1982. Le plomb dans les gisements d'antimoine du Maroc central : expression minéralogique, type paragénétique,

signification géochimique. Chronique de la recherche minière 467 : 5-33.

- Lucius M. 1948. Les gîtes métallifères de l'Oesling, Extrait de la revue technique, 4/48, 41 p.
- Marcoux E. & Moëlo Y. 1991. Lead Isotope Geochemistry and Paragenetic Study of Inheritance Phenomena in Metallogenesis : Examples from Base Metal Sulfide Deposits in France. Economic Geology 86 : 106-120.
- Menchetti S. & Sabelli C. 1980. Peretaite, $CaSb_4O_4(OH)_2(SO_4)_2.2H_2O$: its atomic arrangement and twinning. American Mineralogist 65 : 940-946.
- Moëlo Y. 1988. Contributions à l'étude des conditions naturelles de formation des sulfures complexes d'antimoine et de plomb (sulfosels de Pb/Sb). Signification métallogénique, Documents du BRGM 55 : 1-204.
- Munoz M. & Moëlo Y. 1982. Etude paragénétique de la minéralisation sulfurée complexe (Sb-Pb-Zn...) de Bournac (Hérault, France). Bull. Mineral. 105 : 625-632.
- Nakai I. & Appleman D.E. 1980. Klebelsbergite, $Sb_4O_4(OH)SO_4$: redefinition and synthesis. American Mineralogist 65 : 499-505.
- Orlandi P. 1984. Segnalazione di nuove specie mineralogiche in località italiane [peretaite, klebelsbergite a Micciano—PI]. Riv. Mineral. Ital. 8: 33–40.
- Philippo S. & Hanson A. 2007. La Minéralisation en antimoine de Goesdorf: 111-146, in Philippo S. (eds), Inventaire minéralogique du Luxembourg: Stolzembourg, Schimpach, Goesdorf. Ferrantia 49, Musée national d'histoire naturelle, Luxembourg, 152 p.
- Ramdohr P. 1955. Die Erzemineralien und ihre verwachsungen. Akademie-Verlag, Berlin, 875 p.
- Ramdohr P. 1980. The ore minerals and their intergrowths. 2 volumes. Pergamon Press, 1205 p.
- Robinson G.W. & Normand C. 1996. The Lac Nicolet antimony mine, South Ham, Quebec. The Mineralogical Record 27: 121-134.
- Sabelli C, Orlandi P, Vezzalini G. 1992. Coquandite, Sb₆O₈(SO₄).H₂O, a new mineral from Pereta, Tuscany, Italy, and two other localities. Mineral Mag. 56: 599–603.

- Sarp H, Perroud P, Deferne J. 1983. Présence de peretaite, CaSb₄O₄(OH)₂(SO₄)₂·2H₂O, dans la mine de Cetine (Toscane, Italie). Archives des Sciences Genève 36: 345–347.
- Sejkora J, Ozdín D, Vitáloš J, Tuček P, Čejka J, Ďuďa R. 2007. Schafarzikite from the type locality Pernek (Malé Karpaty Mountains, Slovak Republic) revisited. Eur. J. Mineral. 19: 419–427.
- Wagner T. & Cook NJ. 2000. Late-Variscan antimony mineralisation in the Rheinisches Schiefergebirge, NW Germany: evidence for stibine precipitation by drastic cooling of high-temperature fluid systems. Mineralium Deposita 35: 206-222.
- Wagner T. & Scneider J. 2002. Lead isotope systematics of vein-type antimony mineralization, Rheinisches Schiefergebirge, Germany: a case history of complex reaction and remobilization process. Mineralium Deposita 37: 185-197.
- Wagner T. & Boyce A.J. 2003. Sulfur isotope geochemistry of black shale-hosted antimony mineralization, Arnsberg, northern Rhenish Massif, Germany: implication for late-stage fluid flow during the Variscan orogeny. Journal of the Geological Society 160: 299-308.
- Williams PA. 1990. Oxide zone geochemistry. Chichester: Ellis Horwood.

Annexe

Résultats de l'analyse à la microsonde électronique des sulfures, sulfosels et quelques oxydes de la minéralisation de Goesdorf.

zone	pt	année	wS	wFe	wCo	wNi	wCu	wZn	wAs	wSb	wPb	wTotal	Mineral
THEORIC	0	0	28,32	0	0	0	0	0	0	71,68	0	0	Stibnite
LM07-19	15	2007	28,241	0,008	0	0	0	0	2,185	71,482	0,131	102,047	Stibnite
LM07-19	16	2007	28,340	0,002	0	0	0	0	2,250	71,267	0,253	102,112	Stibnite
LM07-19	29	2007	28,271	0,034	0	0	0	0	2,192	71,203	0,162	101,862	Stibnite
LM07-19	1	2007	28,237	0,027	0	0	0	0,781	2,259	70,974	0,212	102,490	Stibnite
LM07-19	12	2007	28,353	0,008	0	0	0	2,025	2,214	70,595	0,221	103,416	Stibnite
LM07-19	15	2007	28,138	0,015	0	0	0	0,049	2,203	71,605	0,272	102,282	Stibnite
LM07-19	24	2007	28,582	0,027	0	0	0	0,041	2,226	71,652	0,216	102,744	Stibnite
LM07-19	31	2007	28,317	0,012	0	0	0	0,082	2,072	71,583	0,159	102,225	Stibnite
LM07-19	3	2007	27,978	0,027	0	0	0	0,043	2,068	71,258	0,163	101,537	Stibnite
LM07-17	1	2007	27,918	0,024	0	0	0	0,055	2,147	70,595	0,255	100,994	Stibnite
LM07-17	11	2007	28,277	0.034	0	0	0	0.013	2,278	71,205	0.028	101.835	Stibnite
LM07-17	22	2007	27,896	0,011	0	0	0	0,030	2,175	70,125	1,045	101,282	Stibnite
366//R1	22	2008	27,598	0,006	0.001	0.006	0.084	0.000	2,486	71,666	0,000	101,847	Stibine
366//R2	25	2008	27,423	0.027	0,000	0.000	0,308	0.019	2,441	71,377	0,000	101,595	Stibine
366//R3	26	2008	27,427	0.027	0,048	0.037	0.075	0.009	2,452	71,591	0.000	101.666	Stibine
345//R1	40	2008	27,456	0.000	0.014	0.013	0.025	0.000	2,504	71,214	0.000	101.226	Stibine
THEORIC	0	0	29.99	13.06	0	0	0	0	0	56.95	0	100	Berthierite
LM07-17	7	2007	29,731	,12,168	0	0	0	0,038	1,757	56,696	0,166	100,556	Berthierite
LM07-17	8	2007	29,807	12,347	0	0	0	0,051	1,746	56,800	0,159	100,910	Berthierite
LM07-17	9	2007	29,844	12,239	0	0	0	0,075	1,739	56,713	0,186	100,796	Berthierite
LM07-17	10	2007	29,961	12,187	0	0	0	0.023	1,651	56,453	0.246	100,521	Berthierite
345//R1	39	2008	29,117	12.039	0.007	0.313	0.012	0.051	2,061	56,760	0.000	100.360	Berthierite
345//R2	42	2008	29,658	12,103	0.029	0.360	0.010	0.062	2,001	56,891	0,000	101,114	Berthierite
345//R3	45	2008	29,343	11,980	0.020	0,486	0.006	0.000	2,028	57,002	0.000	100.865	Berthierite
345//R5	52	2008	29.268	11.754	0.022	0.314	0.096	0.036	1,997	57.284	0.000	100.771	Berthierite
THEORIC	0	0	27,71	0	0	0	25,47	0	0	48,81	0	101,99	Chalcostibine
366//R1	21	2008	25,120	0,019	0,006	0,043	24,972	0,005	1,996	49,239	0,000	101,400	Chalcostibine
366//R2	24	2008	25,257	0,071	0,038	0,003	24,832	0,046	1,860	49,228	0,000	101,335	Chalcostibine
THEORIC	0	0	23,16	0	0	0	0	0	0	46,91	29,93	0	Fülöppite
LM07-19	25	2007	23,262	0	0	0	0	0,03	1,161	47,315	29,578	101,346	Fülöppite
LM07-19	26	2007	23,374	0,009	0	0	0	0,047	1,256	46,787	29,881	101,354	Fülöppite
LM07-19	29	2007	23,364	0,009	0	0	0	0,046	1,244	47,767	28,433	100,863	Fülöppite
LM07-19	30	2007	23,387	0	0	0	0	0,301	1,202	47,273	29,653	101,816	Fülöppite
LM07-19	1	2007	23,027	0	0	0	0	0,198	1,245	46,883	29,653	101,006	Fülöppite
LM07-17	2	2007	23,571	0,154	0	0	0	0	1,264	48,480	26,511	99,980	Fülöppite
LM07-17	3	2007	23,242	0,018	0	0	0	0,052	1,224	46,833	29,518	100,887	Fülöppite
LM07-17	4	2007	23,167	0,017	0	0	0	0,032	1,163	46,012	29,968	100,359	Fülöppite
LM07-17	5	2007	23,119	0	0	0	0	0,017	1,147	46,215	29,996	100,494	Fülöppite
LM07-17	6	2007	22,991	0,017	0	0	0	0,022	1,191	46,337	29,703	100,261	Fülöppite
361//R1	2	2008	22,877	0,000	0,000	0,051	0,056	0,350	1,364	46,655	27,868	99,221	Fülöppite
361//R1	5	2008	22,914	0,004	0,000	0,000	0,019	0,021	1,394	46,669	27,573	98,594	Fülöppite
366//R1	23	2008	22,808	0,000	0,027	0,044	0,000	0,050	1,404	47,907	26,646	98,886	Fülöppite
351//R1	30	2008	21,934	0,000	0,024	0,003	0,430	0,174	1,358	44,037	29,991	97,951	Fülöppite
351//R1	31	2008	22,680	0,000	0,035	0,020	0,293	0,116	1,375	44,670	30,712	99,901	Fülöppite
351//R2	32	2008	22,372	0,000	0,015	0,009	0,404	0,011	1,277	44,470	30,614	99,172	Fülöppite
351//R4	36	2008	22,695	0,000	0,002	0,043	0,277	3,775	1,330	44,163	30,950	103,235	Fülöppite
			, -	, .							, .	, -	

zone	pt	année	wS	wFe	wCo	wNi	wCu	wZn	wAs	wSb	wPb	wTotal	Mineral
345//R4	48	2008	22,851	0,016	0,011	0,020	0,029	0,102	1,380	47,604	26,648	98,661	Fülöppite
345//R6	53	2008	22,826	0,015	0,011	0,001	0,012	0,065	1,427	47,379	26,818	98,554	Fülöppite
345//R6	54	2008	22,662	0,463	0,015	0,017	0,072	0,079	1,375	46,035	27,374	98,092	Fülöppite
THEORIC	0	0	21.33	0	Ó	0	0	0	0 [´]	38.12	40.54	99.99	Plagionite
LM07-19	2	2007	21,795	0	0	0	0	0	1.012	, 39,260	38,697	100,764	Plagionite
LM07-19	5	2007	21,835	0	0	0	0	0	0,958	39,082	39,605	101,48	Plagionite
LM07-19	6	2007	21,874	0	0	0	0	0	0.977	39,305	38,297	100,453	Plagionite
LM07-19	7	2007	21,721	0	0	0	0	0	0.914	38,882	39.073	100,59	Plagionite
LM07-19	11	2007	21,693	0	0	0	0	0	1.048	38.212	39,751	100.704	Plagionite
LM07-19	12	2007	21.815	0	0	0	0	0	0.969	38.802	39.356	100.942	Plagionite
LM07-19	17	2007	21,488	0	0	0	0	0	0.912	38.684	39,796	100.88	Plagionite
LM07-19	24	2007	21.683	0.003	0	0	0	0	0.941	38,701	39,756	101.084	Plagionite
LM07-19	26	2007	21,677	0.004	0	0	0	0	0.92	38,725	39,346	100,672	Plagionite
LM07-19	14	2007	21,628	0.013	0	0	0	0.050	0.954	38,413	40,325	101,383	Plagionite
LM07-19	17	2007	21.945	0	0	0	0	0.025	0.993	39.241	38,995	101,199	Plagionite
LM07-19	21	2007	21.723	0.028	0	0	0	0.017	0.887	39.069	39.317	101.041	Plagionite
LM07-19	22	2007	21.701	0.009	0	0	0	0.014	0.94	38,952	39.038	100.654	Plagionite
LM07-19	27	2007	21.699	0.139	0	0	0	0.057	0.932	39,178	38,790	100.795	Plagionite
LM07-19	28	2007	21.867	0.004	0	0	0	0.075	1.024	40.211	37.627	100.808	Plagionite
LM07-19	2	2007	21,551	0.004	0	0	0	0.385	0.959	39,389	39,006	101,294	Plagionite
LM07-17	18	2007	21,762	0	0	0	0	0,016	1,026	39,509	38,350	100,663	Plagionite
LM07-17	19	2007	21,369	0	0	0	0	0,023	0,975	39,126	39,080	100,573	Plagionite
361//R1	3	2008	21,215	0,000	0,000	0,013	0,044	0,041	1,046	38,946	37,315	98,620	Plagionite
361//R1	4	2008	21,303	0,000	0,004	0,006	0,025	0,103	1,180	39,073	37,011	98,705	Plagionite
361//R2	7	2008	20,960	0,000	0,048	0,040	0,036	0,245	1,008	38,389	37,607	98,333	Plagionite
361//R3	12	2008	20,827	0,000	0,028	0,000	0,034	0,357	1,107	37,922	37,791	98,066	Plagionite
361//R3	18	2008	20,711	0,000	0,014	0,012	0,017	0,087	0,991	37,027	39,939	98,798	Plagionite
361//R4	20	2008	21,046	0,003	0,006	0,044	0,022	0,399	1,103	38,364	37,965	98,952	Plagionite
THEORIC	0	0	22,86	0	0	0	0	0	0	45,48	31,66	100	Zinkenite
LM07-19	9	2007	22,885	0,023	0,000	0	0,000	1,164	1,095	43,182	33,578	101,927	Zinkenite
LM07-17	15	2007	22,361	0,028	0,000	0	0,000	0,017	1,082	42,456	33,393	99,337	Zinkenite
LM07-19	1	2007	22,782	0	0,000	0	0,000	0	1,096	44,901	31,787	100,566	Zinkenite
LM07-19	3	2007	22,785	0,012	0,000	0	0,000	0	1,113	44,65	31,716	100,276	Zinkenite
LM07-19	4	2007	22,936	0	0,000	0	0,000	0	1,183	44,634	32,192	100,945	Zinkenite
LM07-19	9	2007	22,771	0,017	0,000	0	0,000	0	1,15	44,74	31,695	100,373	Zinkenite
LM07-19	10	2007	22,918	0,003	0,000	0	0,000	0	1,22	45,041	32,3	101,482	Zinkenite
LM07-19	13	2007	22,689	0,006	0,000	0	0,000	0	1,163	43,615	32,861	100,334	Zinkenite
LM07-19	14	2007	22,811	0	0,000	0	0,000	0	1,171	43,815	32,368	100,165	Zinkenite
LM07-19	18	2007	21,515	0	0,000	0	0,000	0	1,084	42,491	32,418	97,508	Zinkenite
LM07-19	19	2007	22,588	0	0,000	0	0,000	0	1,187	44,49	32,213	100,478	Zinkenite
LM07-19	20	2007	22,476	0,007	0,000	0	0,000	0	1,126	43,56	32,741	99,91	Zinkenite
LM07-19	21	2007	22,833	0,056	0,000	0	0,000	0	1,141	44,2	32,542	100,772	Zinkenite
LM07-19	22	2007	22,51	0	0,000	0	0,000	0	1,071	43,484	33,126	100,191	Zinkenite
LM07-19	25	2007	22,605	0	0,000	0	0,000	0	1,133	43,552	33,349	100,639	Zinkenite
LM07-19	28	2007	22,652	0	0,000	0	0,000	0	1,121	43,412	32,619	99,804	Zinkenite
LM07-19	30	2007	22,702	0,002	0,000	0	0,000	0	1,149	43,524	33,027	100,404	Zinkenite
LM07-19	31	2007	22,459	0	0,000	0	0,000	0	1,072	43,903	32,299	99,733	Zinkenite

LM07-19 32 2007 22,537 0 0,000 0 1,13 43,586 33,204 100,457 Zinkenite LM07-19 1007 22,879 0 0,000 0 0,000 0,231 1,101 43,393 33,025 100,487 Zinkenite LM07-19 2007 22,855 0,008 0,000 0,000 0,000 0,000 1,014 43,623 31,887 100,067 Zinkenite LM07-17 12 2007 22,774 0,004 0,000 0,000 0,000 0,000 0,000 1,014 43,613 31,494 100,422 Zinkenite LM07-17 16 2007 22,5 0 0,000 0,000 0,000 1,094 43,643 13,277 9,432 Zinkenite LM07-17 2007 22,5 0,010 0,000 0,000 1,204 43,043 33,354 10,040 Zinkenite M07-17 2007 22,5 0,015 0,017 0	zone	pt	année	wS	wFe	wCo	wNi	wCu	wZn	wAs	wSb	wPb	wTotal	Mineral
LM07-1911200722,79200,00000,0000,0281,10143,39333,025100,488ZinkeniteLM07-1923200722,8570.00,00000,0000,0031,11443,35732,086100,497ZinkeniteLM07-1712200722,7730,0410,00000,0000,0041,02443,85732,086100,677ZinkeniteLM07-1712200722,7730,0010,00000,0000,0011,10744,86732,281100,677ZinkeniteLM07-1714200722,8730,0060,00000,0000,0171,09944,86131,44100,82ZinkeniteLM07-1714200722,5760,0540,0170,00000,0000,0171,09944,36133,73799,435ZinkeniteLM07-1712200722,5760,0540,0170,0070,0070,1010,10443,13330,74791,762ZinkeniteS11/17E11200822,1790,6550,0170,0070,1071,27444,34130,74791,762ZinkeniteS11/17E14200822,1390,4300,0270,2370,1741,21444,34331,40791,742ZinkeniteS11/17E14200822,1480,6530,0070,0200,0771,21444,25330,74791,742Zi	LM07-19	32	2007	22,537	0	0,000	0	0,000	0	1,13	43,586	33,204	100,457	Zinkenite
LM07-19 19 2007 22,859 0 0,000 0,000 0,000 0,001 43,859 32,96 100,291 Zinkenite LM07-19 20 2007 22,276 0,000 0,000 0,000 0,004 1,04 43,859 31,887 100,677 Zinkenite LM07-17 12 2007 22,774 0,000 0,000 0,000 0,000 0,001 1,007 44,861 31,287 31,837 100,607 Zinkenite LM07-17 16 2007 22,54 0,000 0,000 0,000 0,000 0,001 1,094 43,431 32,377 9,432 Zinkenite LM07-17 2 2007 22,55 0,010 0,007 0,000 0,007 0,007 0,017 1,094 43,431 32,377 9,432 Zinkenite 31/1/R 1 2008 22,459 0,013 0,070 0,007 0,027 1,124 44,707 30,355 9,0243 Zinkenite	LM07-19	11	2007	22,792	0	0,000	0	0,000	0,231	1,101	43,339	33,025	100,488	Zinkenite
LM07-192020.0722,6850,0080,0000,0000,0010,0041,385732,98610,0647ZinkeniteLM07-1723200722,7240,00000,0000,0441,20141,86732,331100,951ZinkeniteLM07-1713200722,7240,00000,0000,0011,17544,99132,261101,21ZinkeniteLM07-1714200722,5260,00000,0000,0021,0553,4973,35910,060ZinkeniteLM07-1720200722,5260,00000,0000,0121,0554,3473,35910,060ZinkeniteS1/1/R1200822,1550,0150,0100,0000,0171,22644,3213,3779,172Zinkenite31/1/R28200822,4900,0500,0270,0230,0771,27644,02730,8029,634Zinkenite31/1/R214200822,6490,0500,0000,0070,0791,27644,02730,8029,634Zinkenite31/1/R114200822,6490,0500,0000,0070,0171,27644,02730,8079,342Zinkenite31/1/R114200822,6490,0500,0000,0010,0010,0010,0010,0010,0010,0010,0010,0010,0010,0010,0010,0010,0010,001 <t< td=""><td>LM07-19</td><td>19</td><td>2007</td><td>22,859</td><td>0</td><td>0,000</td><td>0</td><td>0,000</td><td>0,028</td><td>1,085</td><td>43,419</td><td>32,9</td><td>100,291</td><td>Zinkenite</td></t<>	LM07-19	19	2007	22,859	0	0,000	0	0,000	0,028	1,085	43,419	32,9	100,291	Zinkenite
LM07-1923200723.21200,00000,0000,0041,00443,82831,887100,067ZinkeniteLM07-1712200722,7430,0040,0000,0000,0041,21444,86732,03100,951ZinkeniteLM07-1714200722,2450,0050,0000,0001,0177.44,94131,247101,21ZinkeniteLM07-1716200722,560,0250,00000,0001,01943,4313,37799,435ZinkeniteLM07-1716200722,5260,0250,00000,0001,32144,71730,32799,433Zinkenite361//R16200822,4060,0540,0150,0000,0211,02444,54330,72799,433Zinkenite361//R211200822,3700,0500,0000,0310,0271,21644,52630,45599,433Zinkenite361//R11200822,4700,0530,0000,0180,0791,25444,57530,57999,442Zinkenite361//R11200822,4780,0530,0000,0100,0001,61444,97531,5193,442Zinkenite361//R11200822,4780,0000,0000,0000,0001,61644,95630,57994,942Zinkenite361//R316200721,2180,0000,000<	LM07-19	20	2007	22,685	0,008	0,000	0	0,000	0,003	1,11	43,857	32,986	100,649	Zinkenite
LM07-1712200722,7630,0410,0000,0000,0000,0011,07444,86732,0310,0951ZinkeniteLM07-1714200722,7740,0060,0000,0000,0011,07944,86132,26110,012ZinkeniteLM07-1716200722,6450,0000,0000,0000,0011,09943,81333,37791,060ZinkeniteLM07-1720200722,5260,0050,0000,0000,0011,09443,01333,27791,767Zinkenite361/1R2200822,3550,0150,0070,0070,0071,42244,34130,82799,343Zinkenite361/1R210200822,4780,0550,0000,0170,0071,27644,02730,82599,343Zinkenite361/1R211200822,4740,0560,0000,0180,0770,1791,27644,02730,80799,343Zinkenite361/1R114200822,4740,0500,0000,0180,0700,051,17444,30731,00490,222Zinkenite361/1R1150000,0000,0180,0700,0181,0171,36444,75530,0070,022Zinkenite361/1R1160.000,0000,0200,0010,0140,0140,0144,01551,01410,0000.000361/1R116 <td>LM07-19</td> <td>23</td> <td>2007</td> <td>23,212</td> <td>0</td> <td>0,000</td> <td>0</td> <td>0,000</td> <td>0,046</td> <td>1,094</td> <td>43,828</td> <td>31,887</td> <td>100,067</td> <td>Zinkenite</td>	LM07-19	23	2007	23,212	0	0,000	0	0,000	0,046	1,094	43,828	31,887	100,067	Zinkenite
LM07-1713200722,7740,0060,0000,0000,0071,07544,99132,26110,121ZinkeniteLM07-1714200722,8830,0200,00000,0000,0021,05543,49733,5910,060ZinkeniteLM07-1720200722,500,0000,0000,0000,0021,05443,43132,37799,435ZinkeniteLM07-1723200722,5260,0050,0000,0000,0121,31241,34130,47799,176Zinkenite361//R210200822,3750,0500,0070,0070,1791,21244,31730,80299,634Zinkenite361//R210200822,1900,0500,0010,0160,0790,1791,21644,26730,45599,433Zinkenite361//R211200822,1480,0500,0010,0070,0071,00443,70431,00499,622Zinkenite361//R112200822,1480,0500,0040,0010,0051,31444,97731,00499,623Zinkenite361//R113200822,1480,0500,0040,0010,0010,00131,0058,97431,00496,22361//R119200822,4480,0050,0040,0010,0010,00131,0058,97431,00496,22361//R316200721,318 </td <td>LM07-17</td> <td>12</td> <td>2007</td> <td>22,763</td> <td>0,041</td> <td>0,000</td> <td>0</td> <td>0,000</td> <td>0,049</td> <td>1,201</td> <td>44,867</td> <td>32,03</td> <td>100,951</td> <td>Zinkenite</td>	LM07-17	12	2007	22,763	0,041	0,000	0	0,000	0,049	1,201	44,867	32,03	100,951	Zinkenite
LM07-17 14 2007 22,883 0,02 0,000 0,000 0,002 1,099 44,861 31,94 100,82 Zinkenite LM07-17 16 2007 22,645 0,000 0,000 0,000 1,094 43,431 33,377 99,355 Zinkenite M07-17 20 2007 22,55 0,020 0,000 0,000 1,09 43,041 30,747 99,176 Zinkenite 361//R2 10 2008 22,305 0,019 0,007 0,325 1,312 44,171 30,425 99,043 Zinkenite 361//R2 11 2008 22,490 0,040 0,021 0,037 0,605 1,104 43,704 31,51 93,342 Zinkenite 361//R3 14 2008 2,418 0,027 0,048 0,010 0,113 1,414 31,74 1,00,00 Qinkinite 361//R3 14 2008 2,414 0,001 0,001 0,010 0,011 <	LM07-17	13	2007	22,774	0,006	0,000	0	0,000	0,003	1,175	44,991	32,261	101,21	Zinkenite
LM07-1716200722,6450,0000,00000,0000,0031,0943,347933,35910,0606ZinkeniteLM07-1923200722,550,0250,00000,0001,0943,43133,7279,435Zinkenite361/1/R16200822,5550,0150,0150,0190,0071,32243,41130,74799,154Zinkenite361/1/R216200822,1900,0540,0150,0190,0071,3251,11244,71730,80299,634Zinkenite361/1/R314200822,1900,0500,0000,0070,0790,1271,21644,32730,92598,942Zinkenite361/1/R314200822,4430,0530,0000,0580,0730,6051,31444,39731,05199,324Zinkenite361/1/R316200822,4430,0230,0000,000,001,36444,37530,57999,523Zinkenite361/1/R316200721,2180,0000,000,000,000,003,62442,1410,1214Robinsonite1M07-1918200712,31300000,000,300,2040,2041,57546,60410,040Geocronite ?36/1/R327200815,4050,0000,0040,0000,000,000,0040,57646,40410,156Robi	LM07-17	14	2007	22,883	0,02	0,000	0	0,000	0,017	1,099	44,861	31,94	100,82	Zinkenite
LM07-17 20 20.70 22,52 0 0,000 0 0,000 1,094 3,4,31 3,2,377 9,4,35 Zinkenite LM07-19 23 2007 22,526 0,050 0,010 0,007 1,09 43,036 33,621 00,299 9,6435 Zinkenite 361/1/R2 10 2008 22,406 0,051 0,017 0,007 0,037 1,217 44,721 30,802 9,6435 Zinkenite 361/1/R2 11 2008 22,490 0,050 0,000 0,007 0,077 0,179 1,216 44,726 30,925 9,9435 Zinkenite 361/1/R1 1 2008 22,449 0,005 0,001 0,005 0,005 1,314 44,765 30,597 41,941 10,1000 Roinsonite 361/1/R3 16 2007 21,381 0,000 0,00 0,000 0,001 0,214 1,014 1,920 9,9435 Zinkenite 361/1/R3 16	LM07-17	16	2007	22,645	0,008	0,000	0	0,000	0,042	1,055	43,497	33,359	100,606	Zinkenite
LM07-19 23 2007 22,526 0,020 0,000 0,007 1,322 44,314 30,724 79,747 71/110 361//R2 8 2008 22,355 0,015 0,017 0,007 0,725 1,312 44,314 30,747 99,743 Zinkenite 361//R2 14 2008 22,355 0,010 0,021 0,025 1,312 44,526 30,455 99,643 Zinkenite 361//R2 14 2008 22,148 0,053 0,000 0,028 0,275 1,314 44,327 31,004 99,632 Zinkenite 361//R1 14 2008 21,48 0,053 0,007 0,005 0,105 1,344 44,375 31,004 99,632 Zinkenite 361//R1 15 2008 21,281 0,000 0,000 0,000 0,000 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001	LM07-17	20	2007	22,5	0	0,000	0	0,000	0,033	1,094	43,431	32,377	99,435	Zinkenite
361//R1 6 20.8 2,2,46 0,015 0,019 0,092 0,071 1,32 44,341 30,777 99,176 Zinkenite 361//R2 1 2008 22,355 0,019 0,007 0,000 0,032 1,312 44,717 30.825 99,043 Zinkenite 361//R2 10 2008 22,190 0,040 0,001 0,007 0,779 1,261 44,207 30,925 99,043 Zinkenite 361//R3 14 2008 22,449 0,065 0,000 0,007 0,075 1,74 44,376 30,049 99,622 Zinkenite 361//R3 16 028 2,446 0,000 0,00 0,000 0,000 0,000 0,001 0,016 <td< td=""><td>LM07-19</td><td>23</td><td>2007</td><td>22,526</td><td>0,025</td><td>0,000</td><td>0</td><td>0,000</td><td>0</td><td>1,09</td><td>43,036</td><td>33,622</td><td>100,299</td><td>Zinkenite</td></td<>	LM07-19	23	2007	22,526	0,025	0,000	0	0,000	0	1,09	43,036	33,622	100,299	Zinkenite
361//R2 8 20.08 22,355 0,019 0,007 0,027 0,325 1,312 44,717 30,802 99,634 Zinkenite 361//R2 10 2008 22,130 0,050 0,000 0,018 0,097 0,779 1,276 44,027 30,925 98,942 Zinkenite 361//R1 1 2008 22,148 0,053 0,000 0,050 0,055 1,314 44,397 31,004 99,363 Zinkenite 361//R1 1 2008 22,148 0,053 0,000 0,005 0,055 1,314 44,377 31,004 99,363 Zinkenite 361//R1 1 2008 22,446 0,000 0,000 0,000 0,000 36,97 41,94 10,005 Zinkenite 361//R3 16 2007 21,281 0,000 0,00 0,000 0,000 16,76 66,40 10,056 Robinsonite LMO7-19 16 2007 21,75 2,700	361//R1	6	2008	22,406	0,054	0,015	0,019	0,092	0,070	1,432	44,341	30,747	99,176	Zinkenite
361/R2 10 20.08 22,190 0,043 0,027 0,039 0,479 1,261 44,526 30,455 99,043 Zinkenite 361/R2 11 2008 22,649 0,060 0,001 0,079 0,179 1,276 44,027 31,501 99,384 Zinkenite 361/R4 14 2008 22,449 0,030 0,000 0,005 1,314 44,397 31,004 99,622 Zinkenite 361/R4 16 2008 2,148 0,033 0,000 0,000 0,001 0,001 3,075 41,941 100,000 Robinsonite 361/R4 16 2007 21,303 0 0 0 0,001 0,001 0,001 1,414 101,566 Robinsonite 1HEORIC 0 14,648 0,000 0,001 0,001 0,001 0,001 1,414 101,566 Robinsonite 1HEORIC 0 14,648 10,001 0,001 0,000 0,001	361//R2	8	2008	22,355	0,019	0,007	0,000	0,097	0,325	1,312	44,717	30,802	99,634	Zinkenite
361//R2 11 20.08 22,370 0,050 0,018 0,097 1,276 44,027 30,925 98,942 Zinkenite 361//R3 14 2008 22,449 0,050 0,040 0,031 0,057 0,055 1,190 43,704 13,351 99,384 Zinkenite 361//R1 1 2008 22,443 0,003 0,000 0,000 0,000 0,000 0,000 9,022 Zinkenite THEORIC 0 21,008 22,443 0,000 0,000 0,000 0,000 0,000 0,000 44,397 41,94 100,000 Robinsonite THEORIC 0 21,218 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,001 0,001 0,004 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	361//R2	10	2008	22,190	0,043	0,027	0,023	0,039	0,479	1,261	44,526	30,455	99,043	Zinkenite
361//R3 14 2008 22,649 0,065 0,040 0,031 0,050 0,265 1,190 43,704 41,397 31,004 99,384 Zinkenite 361//R1 1 2008 22,148 0,053 0,000 0,000 0,000 0,000 36,97 41,94 90,923 Zinkenite 361//R1 1 2008 21,046 0,000 0,00 0,00 0,00 36,97 41,94 100,00 Robinsonite 361//R3 16 2007 21,281 0,00 0,00 0,00 0,004 0,000 0,004 0,000 0,004 0,000 0,004 0,000 0,004 0,000 0,004 0,004 0,004 0,004 0,004 0,000 0,004 0,004 0,004 0,004 0,004 0,004 0,004 0,004 0,004 0,004 0,004 0,004 0,004 0,004 0,004 0,004 0,004 0,004 0,004 0,014 0,014 0,014 0,0	361//R2	11	2008	22,370	0,050	0,000	0,018	0,097	0,179	1,276	44,027	30,925	98,942	Zinkenite
361//R4 19 2008 22,148 0,053 0,000 0,020 0,000 1,314 44,397 31,004 99,623 Zinkenite 361//R1 1 2008 22,423 0,043 0,027 0,048 0,010 0,00 36,00 36,577 41,94 10,000 Robinsonite 361//R1 16 2008 20,446 0,000 0,008 0,000 0,001 36,024 41,944 10,100 Robinsonite 361//R1 18 2007 21,281 0,000 0,00 0,000 0,004 0,200 36,242 42,144 10,124 Robinsonite 366//R3 27 2008 15,450 0,000 0,00 0,000 0,000 0,035 13,025 68,723 97,555 Geocronite ? 366//R3 28 2008 12,757 2,700 0,000 0,000 0,000 35,394 64,505 99,990 Jamesonite 365//R3 40 2008 21,757 2,700<	361//R3	14	2008	22,649	0,065	0,040	0,031	0,059	0,295	1,190	43,704	31,351	99,384	Zinkenite
361//R1 1 2008 22,423 0,043 0,027 0,08 0,00 0,00 0,00 36,97 41,94 100,00 Robinsonite 361//R1 16 2008 21,48 0,000 0,00 0,00 0,00 36,97 41,94 100,00 Robinsonite 361//R1 16 2007 21,303 0 0 0 0,020 0,948 37,651 41,644 101,54 Robinsonite 14007-19 16 2007 21,303 0 0 0 0,020 0,948 37,651 41,644 101,544 Robinsonite 366//R3 27 2008 15,455 0,000 0,007 0,003 0,000 0,00 3,33 10,20 6,413 9,999 Jamesonite 366//R3 28 2008 12,151 0,010 0,000 0,000 0,000 0,33 3,579 8,407 9,99,94 Jamesonite 365//R3 43 2008 21,712 <	361//R4	19	2008	22,148	0,053	0,000	0,028	0,073	0,605	1,314	44,397	31,004	99,622	Zinkenite
THEORIC000,000,000,000,000,001,001,041,04,04Notone Neinsente361//R316200820,4460,0000,0380,0230,0100,2181,08135,75942,02299,597RobinsoniteLM07-1916200721,2810,005000,0200,02037,65141,644101,216RobinsoniteLM07-191620015,4050,0000,000,000,0000,0000,00016,7666,40100,040Geocronite ?366//R327200815,4050,0000,000,0010,0000,0000,0000,0000,20013,02568,73297,555Geocronite ?366//R327200815,4050,0000,0000,0000,0000,0000,0001,0160,11898,994Jamesonite345//R340200821,7252,7000,0200,0000,0001,01731,02568,73298,994Jamesonite345//R340200821,7222,3110,0160,1250,0000,0001,14737,02936,54598,864Jamesonite345//R340200821,9211,8150,0070,130,0111,0171,00731,1392,14Jamesonite345//R340200821,9211,9250,0070,0140,0011,11440,46432,16098,575Jamesonite <td>361//R1</td> <td>1</td> <td>2008</td> <td>22,423</td> <td>0,043</td> <td>0,027</td> <td>0,048</td> <td>0,081</td> <td>0,105</td> <td>1,364</td> <td>44,765</td> <td>30,597</td> <td>99,453</td> <td>Zinkenite</td>	361//R1	1	2008	22,423	0,043	0,027	0,048	0,081	0,105	1,364	44,765	30,597	99,453	Zinkenite
361//R3 16 2008 20,446 0,000 0,038 0,023 0,010 0,218 1,081 35,759 42,022 99,597 Robinsonite LM07-19 16 2007 21,303 0 0 0 0,003 0,020 0,488 37,651 41,644 101,246 Robinsonite THEORIC 0 16,88 0,000 0,000 0,000 0,000 0,000 16,48 Geocronite 3 366//R3 27 008 15,659 0,000 0,000 0,000 0,000 0,335 13,025 68,723 97,555 Geocronite 3 7HEORIC 0 0 0,000 0,000 0,000 0,000 0,335 13,025 68,739 49,15 99,990 Jamesonite 366//R3 24 2008 21,727 2,740 0,000 0,000 1,014 1,717 30,407 98,940 Jamesonite 345//R3 46 2008 21,727 2,415 0,017 <t< td=""><td>THEORIC</td><td>0</td><td>0</td><td>21,09</td><td>0,00</td><td>0,00</td><td>0,00</td><td>0,00</td><td>0,00</td><td>0,00</td><td>36,97</td><td>41,94</td><td>100,000</td><td>Robinsonite</td></t<>	THEORIC	0	0	21,09	0,00	0,00	0,00	0,00	0,00	0,00	36,97	41,94	100,000	Robinsonite
LM07-1918200721,2810,0050000,0010,0200,94837,65141,644101,214RobinsoniteLM07-1916200721,303000,000,000,0020,09437,65141,644101,214RobinsoniteTHEORIC0016,4880,000,0000,0000,0000,0000,00012,49066,10100,044Geocronite 2366//R327200815,3690,0000,0010,0000,0000,0000,33512,40566,10197,990Jamesonite365//R243200821,2212,7000,0000,0000,0000,0013,35738,40798,994Jamesonite345//R243200821,2222,4200,0330,0000,0000,0011,14037,02936,45498,924Jamesonite345//R544200821,2222,4200,0140,0150,0070,0251,20136,45436,52898,225Jamesonite345//R550200822,4711,8750,0050,0790,1330,0211,30941,13927,04797,569Jamesonite345//R550200822,4712,1180,0070,1280,0011,17440,07432,11993,219Jamesonite345//R55020082,4712,1180,0000,1410,0741,21334,21430,21934,2	361//R3	16	2008	20,446	0,000	0,038	0,023	0,010	0,218	1,081	35,759	42,022	99,597	Robinsonite
LM07-191620721,30300000,000,0000,00437,65141,64410,566RobinsoniteTHEORIC00164,880,0000,0070,0370,0470,0333,0473,5783,8473,84973,84573,8453,64853,64853,64853,64853,64853,64853,64853,64573,64573,64573,64573,64573,64573,64573,64573,	LM07-19	18	2007	21,281	0,005	0	0	0	0,034	0,926	36,824	42,144	101,214	Robinsonite
THEORIC016,880,000,000,000,0016,7666,40100,04Geocronite ?366//R327200815,3690,0000,0370,0350,0400,0000,33513,02568,73297,555Geocronite ?366//R328200815,3690,0000,0000,0000,00035,3940,1599,990Jamesonite ?345//R243200821,7252,4200,030,0000,0000,00035,7836,48536,2823mesonite ?345//R244200821,7222,3110,0150,0070,0251,02136,48536,2823mesonite ?345//R549200822,9611,8750,0050,0790,1330,0111,30944,13927,04797,569Jamesonite ?345//R550200822,9611,8750,0070,1330,0011,40740,07432,13199,219Jamesonite ?345//R551200822,9712,1550,0170,1400,0081,14740,04432,16098,575Jamesonite ?362//R252200821,9152,1180,0070,1330,0111,0071,23338,26435,19198,264Jamesonite ?362//R257200821,8791,0190,0180,0101,02338,26435,19198,264Jamesonite ?362//R2500000,0190,0100,01<	LM07-19	16	2007	21,303	0	0	0	0	0,020	0,948	37,651	41,644	101,566	Robinsonite
366//R3 27 2008 15,405 0,000 0,037 0,035 0,034 0,054 0,290 12,490 60,103 97,448 Geocronite ? 366//R3 28 2008 15,369 0,000 0,000 0,000 0,000 0,000 0,335 13,025 68,732 97,555 Geocronite ? 345//R2 43 2008 21,251 2,420 0,033 0,000 0,000 0,001 35,39 40,15 99,990 Jamesonite 345//R2 44 2008 21,222 2,452 0,044 0,51 0,097 0,025 1,021 36,485 36,528 98,225 Jamesonite 345//R3 46 2008 22,941 1,757 0,005 0,079 0,133 0,021 1,309 41,139 27,047 97,569 Jamesonite 345//R5 50 2008 22,441 2,732 0,021 0,006 0,984 0,001 1,116 0,024 1,123 39,710 32,135	THEORIC	0	0	16,88	0,00	0,00	0,00	0,00	0,00	0,00	16,76	66,40	100,040	Geocronite
366//R3 28 2008 15,369 0,000 0,034 0,060 0,000 0,335 13,025 68,732 97,555 Geocronite ? THEORIC 0 21,75 2,70 0,00 0,00 0,00 0,00 35,39 40,15 99,990 Jamesonite 345//R2 43 2008 21,221 2,420 0,033 0,000 0,00 1,021 36,485 36,528 98,924 Jamesonite 345//R3 46 2008 21,722 2,311 0,016 0,125 0,000 1,147 37,029 36,454 98,864 Jamesonite 345//R5 50 2008 22,441 2,732 0,021 0,060 1,147 4,0704 32,131 99,219 Jamesonite 345//R5 51 2008 22,441 2,732 0,021 0,060 0,584 0,000 1,177 40,074 32,131 99,219 Jamesonite 345//R5 51 2008 21,915 1,183	366//R3	27	2008	15,405	0,000	0,037	0,035	0,034	0,054	0,290	12,490	69,103	97,448	Geocronite ?
THEORIC 0 21,75 2,70 0,00 0,00 0,00 0,00 35,39 40,15 99,990 Jamesonite 345//22 43 2008 21,261 2,420 0,033 0,060 0,097 0,025 1,021 36,455 38,407 98,994 Jamesonite 345//R2 44 2008 21,522 2,452 0,044 0,051 0,097 0,025 1,021 36,455 36,528 98,225 Jamesonite 345//R3 46 2008 21,722 2,311 0,016 0,125 0,000 1,147 37,029 36,454 98,864 Jamesonite 345//R5 50 2008 22,471 2,155 0,017 0,047 0,106 0,009 1,146 40,464 32,160 98,575 Jamesonite 362//R2 57 2008 21,975 2,118 0,09 0,188 0,120 1,238 42,104 30,769 98,721 Jamesonite 362//R2 57	366//R3	28	2008	15,369	0,000	0,000	0,034	0,060	0,000	0,335	13,025	68,732	97,555	Geocronite ?
345//R2 43 2008 21,261 2,420 0,033 0,060 0,039 0,042 0,934 35,798 38,407 98,994 Jamesonite 345//R2 44 2008 21,522 2,452 0,044 0,051 0,097 0,025 1,021 36,485 36,528 98,225 Jamesonite 345//R3 46 2008 21,722 2,311 0,016 0,125 0,000 0,000 1,147 37,029 36,454 98,864 Jamesonite 345//R5 49 2008 22,941 1,875 0,005 0,079 0,133 0,021 1,309 44,139 27,047 97,569 Jamesonite 345//R5 51 2008 22,471 2,155 0,017 0,047 0,106 0,009 1,146 40,464 32,160 98,575 Jamesonite 362//R2 56 2008 21,915 2,118 0,009 0,188 0,178 0,030 1,023 38,264 35,191 98,926 Jamesonite 362//R2 57 2008 21,879 1,974	THEORIC	0	0	21,75	2,70	0,00	0,00	0,00	0,00	0,00	35,39	40,15	99,990	Jamesonite
345//R2 44 2008 21,522 2,452 0,044 0,051 0,005 1,021 36,485 36,528 98,225 Jamesonite 345//R3 46 2008 21,722 2,311 0,016 0,125 0,000 0,060 1,147 37,029 36,454 98,864 Jamesonite 345//R5 49 2008 22,961 1,875 0,005 0,079 0,133 0,021 1,309 44,139 27,047 97,569 Jamesonite 345//R5 50 2008 22,471 2,155 0,017 0,047 0,106 0,009 1,146 40,464 32,160 98,575 Jamesonite 362//R2 55 2008 21,915 2,118 0,009 0,188 0,102 1,023 38,264 35,191 98,926 Jamesonite 362//R2 57 2008 21,879 1,974 0,048 0,126 0,138 0,000 1,122 39,710 33,227 98,264 Jamesonite 362//R2 57 2008 21,879 1,974 0,048 0,122	345//R2	43	2008	21,261	2,420	0,033	0,060	0,039	0,042	0,934	35,798	38,407	98,994	Jamesonite
345//R3 46 2008 21,722 2,311 0,016 0,125 0,000 1,147 37,029 36,454 98,864 Jamesonite 345//R5 49 2008 22,961 1,875 0,005 0,079 0,133 0,021 1,309 44,139 27,047 97,569 Jamesonite 345//R5 51 2008 22,440 2,732 0,021 0,060 0,177 40,074 32,131 99,219 Jamesonite 362//R2 55 2008 22,327 1,925 0,007 0,141 0,078 1,238 42,104 30,769 98,721 Jamesonite 362//R2 56 2008 21,879 1,974 0,048 0,178 0,001 1,223 38,264 35,191 98,926 Jamesonite 362//R2 57 2008 21,879 1,974 0,048 0,178 0,010 1,122 39,710 33,227 98,264 Jamesonite 362//R2 57 2008 21,879 1,974 0,048 0,178 0,017 0 0 0 0 </td <td>345//R2</td> <td>44</td> <td>2008</td> <td>21,522</td> <td>2,452</td> <td>0,044</td> <td>0,051</td> <td>0,097</td> <td>0,025</td> <td>1,021</td> <td>36,485</td> <td>36,528</td> <td>98,225</td> <td>Jamesonite</td>	345//R2	44	2008	21,522	2,452	0,044	0,051	0,097	0,025	1,021	36,485	36,528	98,225	Jamesonite
345//R5 49 2008 22,961 1,875 0,005 0,079 0,133 0,021 1,309 44,139 27,047 97,569 Jamesonite 345//R5 50 2008 22,440 2,732 0,021 0,000 0,584 0,000 1,177 40,074 32,131 99,219 Jamesonite 345//R5 51 2008 22,471 2,155 0,007 0,147 0,106 0,009 1,146 40,464 32,160 98,575 Jamesonite 362//R2 56 2008 21,879 1,925 0,009 0,139 0,141 0,078 1,238 42,104 30,769 98,721 Jamesonite 362//R2 57 2008 21,879 1,974 0,048 0,128 0,101 1,122 39,710 33,227 98,264 Jamesonite 362//R2 57 2008 21,879 1,974 0,08 0,017 0,02 0,02 0,00 0,021 1,023 32,227 98,264 Jamesonite 362//R2 57 2008 53,453 6,000	345//R3	46	2008	21,722	2,311	0,016	0,125	0,000	0,060	1,147	37,029	36,454	98,864	Jamesonite
345//R5 50 2008 22,440 2,732 0,021 0,060 0,584 0,000 1,177 40,074 32,131 99,219 Jamesonite 345//R5 51 2008 22,471 2,155 0,017 0,047 0,106 0,009 1,146 40,464 32,160 98,575 Jamesonite 362//R2 55 2008 22,327 1,925 0,000 0,139 0,141 0,078 1,238 42,104 30,769 98,721 Jamesonite 362//R2 57 2008 21,879 1,974 0,048 0,178 0,000 1,122 39,710 33,227 98,264 Jamesonite 362//R2 57 2008 21,879 1,974 0,048 0,126 0,122 39,710 33,227 98,264 Jamesonite 362//R2 57 2008 21,879 46,55 0 0 0 0 0 0 0 9,721 Jamesonite 362//R2 5 2007 53,453 46,55 0 0 0,000 0,022 0	345//R5	49	2008	22,961	1,875	0,005	0,079	0,133	0,021	1,309	44,139	27,047	97,569	Jamesonite
345//R5 51 2008 22,471 2,155 0,017 0,047 0,166 0,009 1,146 40,464 32,160 98,575 Jamesonite 362//R2 55 2008 22,327 1,925 0,000 0,139 0,141 0,078 1,238 42,104 30,769 98,721 Jamesonite 362//R2 56 2008 21,915 2,118 0,009 0,198 0,178 0,000 1,023 38,264 35,191 98,926 Jamesonite 362//R2 57 2008 21,879 1,974 0,048 0,126 0,138 0,000 1,122 39,710 33,227 98,264 Jamesonite 362//R2 57 2008 21,879 1,974 0,048 0,126 0,138 0,000 1,122 39,710 33,227 98,264 Jamesonite 362//R2 57 2008 21,879 1,974 0,048 0,126 0,020 0 0,020 100,028 Pyrite LM07-17 4 2007 52,783 45,358 0,000 0 0,01	345//R5	50	2008	22,440	2,732	0,021	0,060	0,584	0,000	1,177	40,074	32,131	99,219	Jamesonite
362//R2 55 2008 22,327 1,925 0,000 0,139 0,141 0,078 1,238 42,104 30,769 98,721 Jamesonite 362//R2 56 2008 21,915 2,118 0,009 0,198 0,178 0,030 1,023 38,264 35,191 98,926 Jamesonite 362//R2 57 2008 21,879 1,974 0,048 0,126 0,138 0,040 1,122 39,710 33,227 98,264 Jamesonite JAMESONITE 0 0 53,45 46,55 0 0 0 0 0 0 0 98,264 Jamesonite LM07-17 4 2007 53,466 46,338 0,000 0 0,002 0 0 0,022 100,028 Pyrite LM07-17 5 2007 52,651 45,044 0,000 0 0,001 0,016 0 97,712 Pyrite LM07-17 7 2007 53,153 45,996 0,000 0 0,017 0 0,034 99,219 <t< td=""><td>345//R5</td><td>51</td><td>2008</td><td>22,471</td><td>2,155</td><td>0,017</td><td>0,047</td><td>0,106</td><td>0,009</td><td>1,146</td><td>40,464</td><td>32,160</td><td>98,575</td><td>Jamesonite</td></t<>	345//R5	51	2008	22,471	2,155	0,017	0,047	0,106	0,009	1,146	40,464	32,160	98,575	Jamesonite
362//R2 56 2008 21,915 2,118 0,009 0,198 0,178 0,030 1,023 38,264 35,191 98,926 Jamesonite 362//R2 57 2008 21,879 1,974 0,048 0,126 0,138 0,040 1,122 39,710 33,227 98,264 Jamesonite THEORIC 0 53,45 46,55 0	362//R2	55	2008	22,327	1,925	0,000	0,139	0,141	0,078	1,238	42,104	30,769	98,721	Jamesonite
362//R2 57 2008 21,879 1,974 0,048 0,126 0,138 0,040 1,122 39,710 33,227 98,264 Jamesonite THEORIC 0 0 53,45 46,55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Pyrite LM07-17 4 2007 53,466 46,338 0,000 0 0,000 0,022 0 0 0,028 Pyrite LM07-17 5 2007 52,783 45,358 0,000 0 0,000 0,023 0,023 0 0,084 98,271 Pyrite LM07-17 6 2007 52,651 45,044 0,000 0 0,001 0,016 0 97,712 Pyrite LM07-17 7 2007 53,153 45,996 0,000 0 0,001 0,017 0 0,344 99,219 Pyrite LM07-17 17 2007 54,671 46,220 0,000 0 0,000 0	362//R2	56	2008	21,915	2,118	0,009	0,198	0,178	0,030	1,023	38,264	35,191	98,926	Jamesonite
THEORIC 0 53,45 46,55 0	362//R2	57	2008	21,879	1,974	0,048	0,126	0,138	0,040	1,122	39,710	33,227	98,264	Jamesonite
LM07-174200753,46646,3380,00000,0000,022000,202100,028PyriteLM07-175200752,78345,3580,00000,0000,0230,02300,08498,271PyriteLM07-176200752,65145,0440,00000,0000,0110,016097,712PyriteLM07-177200753,15345,9960,00000,0000,01700,03499,219PyriteLM07-1717200754,67146,2200,00000,0000,0140,0800,183101,198PyriteLM07-1723200752,12345,0450,00000,0000,0162,14700,05699,407PyriteLM07-179200753,42037,6180,0007,8440,0000,1730,0491,2420,157100,503PyriteLM07-111200754,25046,2740,00000,0000,17300,052100,749PyriteLM07-112200750,95644,6690,00000,0000,0183,65900,18499,486PyriteLM07-1724200733,0291,2310,00000,00062,8920,1351,179098,466Sphalerite	THEORIC	0	0	53,45	46,55	0	0	0	0	0	0	0	0	Pyrite
LM07-17 5 2007 52,783 45,358 0,000 0,000 0,023 0,023 0 0,084 98,271 Pyrite LM07-17 6 2007 52,651 45,044 0,000 0 0,001 0,016 0 0 97,712 Pyrite LM07-17 7 2007 53,153 45,996 0,000 0 0,010 0,016 0 0 97,712 Pyrite LM07-17 7 2007 53,153 45,996 0,000 0 0,001 0,017 0 0,034 99,219 Pyrite LM07-17 17 2007 54,671 46,220 0,000 0 0,000 0,017 0 0,034 99,219 Pyrite LM07-17 17 2007 54,671 46,220 0,000 0 0,000 0,017 0 0,034 99,219 Pyrite LM07-17 23 2007 53,420 37,618 0,000 7,844 0,000 0,173 0,049 1,242 0,157 100,503 Pyrite	LM07-17	4	2007	53,466	46,338	0,000	0	0,000	0,022	0	0	0,202	100,028	Pyrite
LM07-17 6 2007 52,651 45,044 0,000 0,000 0,001 0,016 0 0 97,712 Pyrite LM07-17 7 2007 53,153 45,996 0,000 0,000 0,017 0 0,034 99,219 Pyrite LM07-17 7 2007 54,671 46,220 0,000 0 0,001 0,017 0 0,034 99,219 Pyrite LM07-17 17 2007 54,671 46,220 0,000 0 0,000 0,017 0 0,034 99,219 Pyrite LM07-17 17 2007 54,671 46,220 0,000 0 0,001 0,017 0 0,034 99,219 Pyrite LM07-17 23 2007 52,123 45,045 0,000 0 0,003 2,147 0 0,056 99,407 Pyrite LM07-11 1 2007 53,420 37,618 0,000 0 0,173 0,049 1,242 0,157 100,503 Pyrite LM07-11 1	LM07-17	5	2007	52,783	45,358	0,000	0	0,000	0,023	0,023	0	0,084	98,271	Pyrite
LM07-17 7 2007 53,153 45,996 0,000 0,000 0,017 0 0,034 99,219 Pyrite LM07-17 17 2007 54,671 46,220 0,000 0 0,004 0,08 0 0,183 101,198 Pyrite LM07-17 23 2007 52,123 45,045 0,000 0 0,000 0,044 0,08 0 0,183 101,198 Pyrite LM07-17 23 2007 52,123 45,045 0,000 0 0,000 0,044 0,08 0 0,183 101,198 Pyrite LM07-17 9 2007 53,420 37,618 0,000 0,000 0,173 0,049 1,242 0,157 100,503 Pyrite LM07-11 1 2007 54,250 46,274 0,000 0 0,018 3,659 0 0,184 99,486 Pyrite LM07-11 2 2007 50,956 44,669 0,000 0 0,018 3,659 0 0,184 99,486 Pyrite	LM07-17	6	2007	52,651	45,044	0,000	0	0,000	0,001	0,016	0	0	97,712	Pyrite
LM07-17 17 2007 54,671 46,220 0,000 0,000 0,004 0,08 0 0,183 101,198 Pyrite LM07-17 23 2007 52,123 45,045 0,000 0 0,000 0,036 2,147 0 0,056 99,407 Pyrite LM07-17 9 2007 53,420 37,618 0,000 7,844 0,000 0,173 0,049 1,242 0,157 100,503 Pyrite LM07-11 1 2007 54,250 46,274 0,000 0 0,018 3,659 0 0,184 99,486 Pyrite LM07-11 2 2007 50,956 44,669 0,000 0 0,018 3,659 0 0,184 99,486 Pyrite THEORIC 0 0 32,90 0 0 0,000 67,10 0 0 0 Sphalerite LM07-17 24 2007 33,029 1,231 0,000 0,000 62,892 0,135 1,179 0 98,466 Sphalerite <td>LM07-17</td> <td>7</td> <td>2007</td> <td>53,153</td> <td>45,996</td> <td>0,000</td> <td>0</td> <td>0,000</td> <td>0,019</td> <td>0,017</td> <td>0</td> <td>0,034</td> <td>99,219</td> <td>Pyrite</td>	LM07-17	7	2007	53,153	45,996	0,000	0	0,000	0,019	0,017	0	0,034	99,219	Pyrite
LM07-17 23 2007 52,123 45,045 0,000 0,000 0,036 2,147 0 0,056 99,407 Pyrite LM07-17 9 2007 53,420 37,618 0,000 7,844 0,000 0,173 0,049 1,242 0,157 100,503 Pyrite LM07-11 1 2007 54,250 46,274 0,000 0 0,173 0 0,052 100,749 Pyrite LM07-11 2 2007 50,956 44,669 0,000 0 0,018 3,659 0 0,184 99,486 Pyrite THEORIC 0 0 32,90 0 0 0 0,000 62,892 0,135 1,179 0 98,466 Sphalerite	LM07-17	17	2007	54,671	46,220	0,000	0	0,000	0,044	0,08	0	0,183	101,198	Pyrite
LM07-17 9 2007 53,420 37,618 0,000 7,844 0,000 0,173 0,049 1,242 0,157 100,503 Pyrite LM07-11 1 2007 54,250 46,274 0,000 0 0,000 0 0,173 0 0,052 100,749 Pyrite LM07-11 2 2007 50,956 44,669 0,000 0 0,018 3,659 0 0,184 99,486 Pyrite THEORIC 0 0 32,90 0 0 0 0,000 62,892 0,135 1,179 0 98,466 Sphalerite	LM07-17	23	2007	52,123	45,045	0,000	0	0,000	0,036	2,147	0	0,056	99,407	Pyrite
LM07-11 1 2007 54,250 46,274 0,000 0 0,173 0 0,052 100,749 Pyrite LM07-11 2 2007 50,956 44,669 0,000 0 0,018 3,659 0 0,184 99,486 Pyrite THEORIC 0 0 32,90 0 0 0 67,10 0 0 0 Sphalerite LM07-17 24 2007 33,029 1,231 0,000 0 0,000 62,892 0,135 1,179 0 98,466 Sphalerite	LM07-17	9	2007	53,420	37,618	0,000	7,844	0,000	0,173	0,049	1,242	0,157	100,503	Pyrite
LM07-11 2 2007 50,956 44,669 0,000 0,000 0,018 3,659 0 0,184 99,486 Pyrite THEORIC 0 0 32,90 0 0 0 67,10 0 0 0 Sphalerite LM07-17 24 2007 33,029 1,231 0,000 0 62,892 0,135 1,179 0 98,466 Sphalerite	LM07-11	1	2007	54,250	46,274	0,000	0	0,000	0	0,173	0	0,052	100,749	Pyrite
THEORIC 0 32,90 0 0 0 67,10 0 0 0 Sphalerite LM07-17 24 2007 33,029 1,231 0,000 0 0,000 62,892 0,135 1,179 0 98,466 Sphalerite	LM07-11	2	2007	50,956	44,669	0,000	0	0,000	0,018	3,659	0	0,184	99,486	Pyrite
LM07-17 24 2007 33,029 1,231 0,000 0 0,000 62,892 0,135 1,179 0 98,466 Sphalerite	THEORIC	0	0	32,90	0	0	0	0	67,10	0	0	0	0	Sphalerite
	LM07-17	24	2007	33,029	1,231	0,000	0	0,000	62,892	0,135	1,179	0	98,466	Sphalerite

zone	pt	année	wS	wFe	wCo	wNi	wCu	wZn	wAs	wSb	wPb	wTotal	Mineral
361//R2	9	2008	29,483	0,606	0,033	0,018	0,085	58,844	0,232	4,445	0,000	93,746	Sphalerite
351//R4	37	2008	32,401	0,032	0,017	0,002	0,210	66,628	0,056	0,097	0,000	99,443	Sphalerite
351//R4	38	2008	32,519	0,030	0,028	0,015	0,166	65,686	0,059	0,765	0,000	99,268	Sphalerite
THEORIC	0	0	34,94	30,43	0,00	0,00	34,63	0	0	0	0	0	Chalcopyrite
345//R2	41	2008	34,788	28,463	0,017	0,000	33,430	0,083	0,020	0,516	0,000	97,317	Chalcopyrite
THEORIC	0	0	15,09	0	0	27,61	0	0	0	57,29	0	99,99	Ullmannite
LM07-17	1	2007	15,192	0,027	0,000	26,576	0,000	0,360	2,835	56,255	0,040	101,285	Ullmannite
LM07-17	2	2007	15,259	0,009	0,000	26,692	0,000	0,377	4,497	53,947	0,096	100,877	Ullmannite
LM07-17	3	2007	15,367	0,020	0,000	26,839	0,000	0,147	4,490	53,776	0,063	100,702	Ullmannite
LM07-17	4	2007	15,350	0,014	0,000	26,919	0,000	0,099	4,443	54,510	0,130	101,465	Ullmannite
LM07-17	5	2007	15,112	0,034	0,000	25,886	0,000	0,100	2,293	57,150	0,055	100,630	Ullmannite
LM07-17	6	2007	15,212	0,027	0,000	25,730	0,000	0,064	2,292	57,497	0,079	100,901	Ullmannite
LM07-17	7	2007	14,976	0,019	0,000	25,963	0,000	0,000	2,218	57,743	0,099	101,018	Ullmannite
LM07-17	8	2007	15,034	0,023	0,000	26,104	0,000	0,078	2,284	57,063	0,058	100,644	Ullmannite
361//R3	17	2008	15,264	0,053	0,686	24,702	0,167	0,153	2,630	56,834	0,000	100,489	Ullmannite
345//R4	47	2008	14,835	0,007	0,031	26,929	0,044	0,032	2,349	57,823	0,000	102,050	Ullmannite
LM07-19	8	2007	0,163	0,046	0,000	0	0,000	0	3,109	80,233	0,153	83,704	Valentinite
LM07-19	27	2007	0,041	0,006	0,000	0	0,000	0	3,178	81,698	0,215	85,138	Valentinite
366//R4	29	2008	0,027	0,011	0,012	0,018	0,024	0,067	3,636	82,554	0,032	86,381	Senarmontite
351//R3	33	2008	0,023	0,031	0,028	0,016	0,028	0,080	3,668	80,275	0,194	84,343	Senarmontite
351//R3	35	2008	0,200	0,012	0,022	0,050	0,007	0,405	3,614	79,890	0,095	84,295	Senarmontite
LM07-19	8	2007	24,962	0,003	0,000	0	0,000	1,175	2,219	64,615	0,149	93,123	Kermesite?
LM07-19	13	2007	27,261	0,043	0,000	0	0,000	4,216	2,005	64,741	2,755	101,021	Unknown 1
LM07-17	21	2007	26,341	0,014	0,000	0	0,000	0,04	1,817	62,712	10,574	101,498	Unknown 2